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Abstract

Robust Event-based Angular Velocity Estimation
in Dynamic Environments

Lee, Sangil

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

This dissertation addresses the problem of estimating the angular velocity of the event cam-

era with robustness to a dynamic environment where moving objects exist. These vision-based

navigation problems have been mainly dealt with in frame-based cameras. The traditional frame-

based cameras such as monocular or RGB-D image sensors capture the whole frame of absolute

intensity and/or depth, thus making them easy to recognize temporary environments. However,

even under the common illumination conditions, these sensors require a certain amount of time

to collect light during which data is not output, thus latency occurs. Also, a video with a high dy-

namic range, e.g., a 14-bit raw image, is not usually used for computer vision due to its extremely

high data bandwidth, and the general 8-bit image sequences easily lose their intensity data under

overexposure or underexposure environments. Contrary to the conventional cameras that produce

frames, events cameras operate asynchronously by imitating the human eye. Event cameras re-

spond to the intensity changes in the temporal domain and generate an event that is triggered at

the pixel whose intensity has changed. Due to the nature of the event cameras, they output data

stream with low latency and high time resolution in us units. Besides, the event cameras only

perceive relative intensity, they can have a higher dynamic range of more than 120 dB, whereas

the standard cameras have 60 dB approximately. I take these advantages of the event cameras to

detect moving objects and estimate the ego-motion of the camera in dynamic environments.

The first part of the dissertation focuses on asynchronously estimating optical flow streams

with low latency and robustness to various scenes. Due to the fundamental difference between
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traditional and event cameras, most existing algorithms construct event frames by stacking the

timestamp value of many events and exploit the legacy of traditional computer vision algorithms.

However, this approach increases latency in proportion to the size of a time window, and the size

has to be set heuristically. I estimate an optical flow stream with very low latency by enhancing

the existing block matching algorithm. The locally estimated optical flow is more accurate than

that of the method using a global event frame, in front of irregularly textured scenes. To validate

the latency of optical flow, I present the result of angular velocity estimation by using the pro-

posed optical flow stream. Then, the latency is computed by the optimization approach comparing

the estimated and ground-truth angular velocity. The evaluation results suggest that the proposed

optical flow has very low latency while showing comparable accuracy to event-frame-based algo-

rithms. Besides, the performance of angular velocity estimation is superior to the other existing

algorithms in terms of accuracy and robustness with low latency under 15 ms consistently.

The second part of the dissertation proposes an angular velocity estimation with motion seg-

mentation. Unlike traditional cameras, since event cameras detect intensity changes, their event

data can be dominated by a small but fast-moving object. To eliminate the influence from the

movement of an undesirable object, I utilize the optical flow stream of the first work and intra-

pixel-area method and separate an image frame into the static and dynamic regions. Moreover,

since event cameras do not produce events at stationary, a classification model should be ad-

dressed in the temporal domain and be able to segment motion temporally. Thus, I employ the

dual-mode motion model to update models that determine the region occupied by moving objects.

Then, the angular velocity of ego-motion is estimated from a bunch of optical flows belonging

to the static region. The evaluation results suggest that the proposed algorithm divides the image

frame into static and dynamic parts successfully and estimates the angular velocity robustly in

dynamic environments.

Keywords: Event camera, dynamic environment, motion segmentation, angular velocity,

intra-pixel-area event, optical flow, robustness
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xii
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1
Introduction

Recently, the role and market of robotic systems are expanded from the manufacturing envi-

ronment to cover individual purposes. In order for a robot to interact with humans and perform

assigned tasks in various and unknown environments, sensing systems for the robot are required.

Existing sensors in robot systems are mainly inspired by human senses: vision (infrared, CMOS

cameras), hearing (microphone, SONAR, gyroscope), touch (force sensor, touch screen), smell

(gas sensor), and taste (water pollution sensors), etc. Among these sensors, a vision system is

very important for a mobile robot system to recognize the relationship between itself and the

environment. Most of their vision sensors construct 2D images (infrared, RGB/monocular) or

3D point cloud (LiDAR, depth sensor). Particularly, RGB/monocular cameras are widely used in

robotic systems because of their versatility and similarity to the vision system of humans; Fig. 1.1

shows the structure of the biological vision system and the electrical image sensor.

In each figure, the light intensity is received in the photoreceptor and photodiode, and con-

verted to the interpretable signal. In our eyes, the light reflected from an object passes through

the cornea, pupil, lens, and vitreous body, then focuses an image onto the retina, which has three

major cell components: photoreceptor, bipolar cells, and ganglion cells. The retina converts the
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Figure 1.1: Anatomy of vision systems: (a) biological retina of human and (b) the conventional

Front-Side-Illuminated (FSI) image sensor. These figures are modified and used inspired by [1,2].

light intensity into electrical impulses and transmits the signal into the brain through nerve fibers.

Photoreceptor cells are composed of rod cells and cone cells. The rod cells are more sensitive to

light than cone cells, thus they work better in low illumination environments. On the other hand,

the cone cells work better in bright environments, and they respond to the wavelength of light

depending on the type of cone cells, S-cone (blue), M-cone (green), L-cone (red).

Like the three types of cone cells, the conventional RGB cameras have a color filter in front

of photodiode sensors. Each pixels output the intensity of each color, and the processor generates

an image of full resolution by using 2D interpolation. However, the limitation of the traditional

cameras comes from their synchronous system. Their pixels are exposed to the light during the

same exposure time and form a frame. The general frame-based vision sensor with 30 fps (frame

per second) not only loses the detailed information of moving objects, so-called motion blur, but

also transmits redundancy data for static scenes. When the frame rate of video is increased by

30 times to detect moving object with high temporal resolution in ms units, the bandwidth on a

digital transmission is up to 345 Mbps (Megabits per second) from 240×180 pixels at 1000 fps,

for reference, theoretical transmit rate of USB 2.0 is 480 Mbps.

To overcome the limitation of conventional cameras, respond to moving object, and reduce

redundant data transmission, event cameras, also known as silicon retina, neuromorphic cam-
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Figure 1.2: Comparison between the output of an event camera and a frame-based sensors. This

figure is adopted from [3] (https://youtu.be/LauQ6LWTkxM?t=35s) and modified inspired by [4].

Frames with a fixed frame rate are represented in the upper, and event streams (positive in blue

and negative in red) are shown in the lower. On the right, the upper image depicts two overlaid

frames and the lower shows the stacked events during some interval in the xy-plane.

eras, or dynamic vision sensors, was first introduced in [20, 21] and practically proposed in

[10–12, 15, 16]. These kinds of sensors are motivated by the asynchronism of human eyes. Sim-

ilar to the photoreceptor of the human retina that responds to the light and converts the light

into a nerve signal, the photodiode of the silicon retina senses the light change and transmits an

event. The event cameras have the following features in comparison with conventional cameras:

low-latency, high time resolution, and wide dynamic range. An asynchronous output of the event

stream makes the vision sensor perceive a scene with low latency and high time resolution. Con-

trary to conventional cameras which have a fixed frame rate, the pixel of event cameras triggers a

brightness change and transmits events individually and independently. Additionally, since pixels

do not wait for a global exposure time and operate on a logarithmic scale of light intensity, event

cameras have a wider dynamic range (> 120 dB) than frame-based cameras (∼ 60 dB).

Fig. 1.2 describes the output of a frame-based camera and an event camera. The frame-based

camera produces the synchronized dense image for each frame with a fixed frame rate and shows
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motion blur and blind time because of the frame rate and global exposure time. On the contrary,

the event-based camera produces the sparse stream of events asynchronously without typical

motion blur and blind time. Due to the fundamental difference from frame-based cameras, the

event stream cannot be directly exploited for the traditional computer vision techniques such as

feature detection, tracking, motion segmentation, and estimation.

When it comes to implementing event-based computer vision algorithms, the methods can be

categorized as an event-by-event basis or event-frame-based approaches depending on whether

a single event or multiple events are processed at the same time. Some filter-based or network-

based algorithms are implemented on an event-by-event basis, and event-frame-based algorithms

construct event frames by stacking the timestamp of events according to the time window or the

number of events. In addition, depending on how events are processed, there are two approaches:

model-based and model-free [22]. The model-based approach uses intensity formulas or motion

models to compute feature, optical flow or motion, etc. Meanwhile, model-free approach process

events as an input of an artificial neural network.

In the dissertation, I exploit the event-by-event basis and model-based approach, and pro-

pose an optical flow estimation algorithm with low latency and robustness to various scenes.

Compared with the existing event-frame-based algorithms which estimate the optical flow using

event group, the proposed algorithm produces an asynchronous optical flow stream with very low

latency while maintaining similar accuracy. In particular, the estimated angular velocity shows

better performance than state-of-the-art algorithms in terms of accuracy, latency, and robustness

to various scenes. Moreover, an algorithm that estimates the angular velocity component of the

ego-motion is proposed by exploiting the event-based optical flow stream. The angular veloc-

ity estimation complemented by the proposed motion segmentation algorithm can estimate the

ego-motion in a dynamic environment where moving objects such as vehicles exist.
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1.1 Literature Survey

1.1.1 Event Representation

Event cameras produce asynchronous events which are frame-less information whereas conven-

tional cameras such as Charge-Coupled Device (CCD), Complementary Metal–Oxide Semicon-

ductor (CMOS), depth camera output image in the form of a frame. Since a single event has

little information, it is difficult to exploit the traditional computer vision algorithms by using

these streams. Thus, to adopt the asynchronous frame-less event, many approaches have tried

to transform events into alternative representations and fetched the processed event data. In the

following, I briefly review several event representations.

Event stream: Some research to maintain the high temporal resolution of event cameras

update their algorithm for each incoming event, ek = (xk, pk, tk). Because a single event has

little information and implies both spatial motion and temporal change, it is difficult to interpret a

single event. In order to process event stream one by one, probabilistic filters [4,23,24] or Spiking

Neural Network (SNN) [25, 26] are widely chosen.

Event packet: To infer a common temporal motion or spatial connectivity between events,

event packet E = {ek}Ne
k=1 are fetched and processed at once [27–30]. The size of the event packet

Ne is set heuristically depending on the applications and scenes. A rich-textured scene demands

a large number of events, whereas a small number of events are needed in a poor-textured scene.

Also, it has to be determined small enough if the algorithm assumes that a motion is constant

during time intervals.

Image of stacked events: By stacking the timestamp of event packet, Surface of Active

Events (SAE), also known as time slice or time image, is constructed. SAE Σe is an image of

the same size with the frame resolution of the sensor and is composed of the latest timestamps of
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(a) (b)

(c) (d)

Figure 1.3: Examples of event representations in usage: (a) Event stream with colored polarity

(positive in green and negative in red), (b) SAE with denoting the latest event as darker, (c) IWE

with denoting the higher contrast as darker, (d) Spatio-temporal graph [5]. (a)-(c) are generated

by the same event group on the DVSFlow16 sequence [6].

events in the corresponding pixel:

Σe : N2 → R (1.1)

xk 7→ Σe(xk) = tk.

Depending on the usage, SAEs for positive or negative events are updated separately [31]. Since

SAE includes timestamp and implies local visual flow, there are many literature exploiting SAE

[19, 32–34].
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Motion-compensated image of events: Another 2D representation of event packet is an

Image of Warped Events (IWE) [28, 35–37] and event-count image [38]:

I(x; θ) =
Ne∑
k=1

bkδ(x− x′k(θ)), (1.2)

where bk can be pk or 1 whether the polarity is used or not, δ is Dirac delta function, and x′k(θ)

is the pixel position of event warped by motion parameter θ. IWE was proposed to describe

event trajectory along the time axis and find constant motion during time window. In practice,

the Dirac delta function can be replaced by the normal probability density function with zero

mean [28, 39], or unit sample function δ[x − x′k(θ)] with discretization grid size smaller than 1

for precise resolution [38].

Spatio-temporal points: To utilize the temporal relationship between event stream, 3D rep-

resentation also presented in (x, y, t) space [5,40,41]. A. Mitrokhin et al. [40] is developed based

on PointNet++ [42] for their graph convolutional network. In [5], they proposes a spatio-temporal

graph to segment moving object with smooth boundaries. [43–45] use voxel grid to construct the

Disparity Space Image (DSI) volume and estimate semi-dense depthmap.

1.1.2 Event Processing

To cope with an asynchronous and sparse event stream, there are mainly two categories. These

categories are divided into 1) event-by-event basis and 2) event group, whether how many events

are required and processed for an algorithm.

Event-by-event basis algorithms operate for each incoming event. These types of algorithms

fetch a single event and produce outputs with a high temporal resolution, which is the one of

advantages of event cameras. However, events are derived from both the spatial and temporal

contrast, thus the system of the algorithm needs information of the past events. Therefore, to deal

with a single event, most research implements statistical-filtering-based [4, 23, 24] or artificial-

neural-network-based approach [25, 26, 46]. A statistical filter fetches an event and compares

event occurrence frequency of events [24] or intensity changes [23, 47] with event generation
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model. Then, they update the filter state by the innovation caused by a mismatch of the model

and measurement.

Another plenty of research on an event-by-event basis utilizes the Artificial Neural Network

(ANN). The structure of ANN is motivated by the nerve network of the human, each neuron of

the network fetches an input value or the output of the previous neuron and produces a signal to

the next neuron through their action mechanism. Among ANN, an SNN processes a single event

and activates neurons only related to the input, thus reducing computational loads. In [26], they

regress the angular velocity with comparable accuracy to ANN-based algorithm. Also, C. Lee

et al. [25] introduce hybrid architecture composed of SNN and ANN to estimate dense flowmap

while resolving the spike vanishing issue.

Event group forms various event representations above depending on the purpose of research.

Because a single event carries little information, implies both spatial and temporal contrast, and is

vulnerable to noise such as thermal noise, processing multiple events simultaneously can increase

the signal-to-noise ratio and yield reliable results. Whether the group of events forms 2D or 3D

representations, events are grouped according to their timestamp or number.

The former grouping method [26,48,49] is similar to the conventional cameras that have fixed

time intervals. The algorithm forming event frame with frame rate operates periodically, but its

computational loads vary depending on the motion since fast motion induces lots of events. Also,

since slow motion generates not too enough events to describe the scene, the constructed event

frame has few valid data and yields unreliable results. On the contrary, the event group of a large

time interval describes the motion of events well [40], but the event trajectories of an edge can be

overwritten by another edge in 2D representations [34] and constant motion assumption during

time intervals is hard to be held.

On the other hand, the latter grouping method [5, 27, 36, 50, 51] is more suitable for the data-

driven sensor. This type of algorithm operates frequently under a fast motion or rich-textured

scene, whereas produces output rarely at stationary cameras, not yielding redundant results. How-

ever, in front of the over-rich-textured scene, it is difficult to estimate reliable motion with an

insufficient number of events. Thus, the number of events in the group varied depending on the
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texture level of the scenes.

Besides, the common limitation of the above grouping method is that a non-uniform texture of

the scene is not considered. In that situation, some region may suffer from the redundancy input

causing edge bleeding, whereas other region lacks events to describe the scene. Some research

proposes a method that adjusts a time window [52] or the number of events [30, 50] not to set

the parameter heuristically, but this adjustment does not resolve the non-uniformed generation

of events in the image frame. Overall, the tuning parameter for grouping events is critical to the

performance of the algorithm.
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1.2 Contributions and Outline

The dissertation aims to estimate angular velocity robustly in dynamic environments. The pro-

posed algorithm updates the motion parameter of the static environment while taking advantages

of event camera such as low latency and high temporal resolution. To improve the robustness of

the algorithm, I propose an intra-pixel-area event that is robust to pixel noise, and its applications

such as visual flow, lifetime estimation, and edge detection are shown in Chapter 3. Next, Chap-

ter 4 estimates a scene-robust optical flow stream while satisfying low-latency characteristic. The

estimated asynchronous optical flow stream is validated on publicly available datasets in terms of

accuracy and robustness to various scenes. Moreover, the proposed optical flow stream leads to

an accurate angular velocity estimation with low latency and high temporal resolution. Finally,

in Chapter 5, I segment different motions of static backgrounds and dynamic foregrounds by

using the legacy of Chapters 3 and 4, which are used to construct a grid-based flowmap. Then,

the proposed dual-mode motion models estimate the angular velocity of the ego-motion. The

contributions of this dissertation are summarized as follows.

Chapter 3: Intra-pixel-area Events and Applications

• Intra-pixel-area events: I propose an intra-pixel-area event inside a pixel area on an image

plane. In this chapter, the intra-pixel-area event is presented as a new threshold for the plane

fitting methods.

• Robustness to pixel noise: A fitting plane method with intra-pixel-area event estimates a

visual flow robustly and the lifetime of the event precisely.

• Sharp edge map estimation: The visual flow and lifetime of event are used to estimate the

edge map. The proposed edge map detection performs better than the existing algorithm in

terms of similarity metric.
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Chapter 4: Low-Latency and Scene-Robust Asynchronous Optical Flow Stream Estimation

• Optical flow estimation with low latency: The proposed optical flow estimation algorithm

computes local optical flow using local time slices, thus it produces optical flow stream with

very low latency while showing comparable accuracy to the existing event-frame-based

optical flow estimation algorithms.

• Robustness to motion speed and texture level of scene: I evaluate the algorithm in terms

of latency and accuracy on scenes with various motion speed and texture levels. The eval-

uation suggests that the proposed algorithm shows low latency within 15 ms consistently

and high accuracy in comparison with the existing angular velocity estimation algorithms.

Chapter 5: Robust Angular Velocity Estimation in Dynamic Environments

• Dual-mode motion model: The proposed dual-mode motion model for event camera seg-

ments static background and moving objects in an image frame without prior information

about the number, shape of objects.

• Robustness to moving objects: The proposed algorithm accurately and robustly estimates

the angular velocity of the camera itself in the collected datasets, which include various

situations such as moving vehicles, stationary cameras.
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2
Preliminaries

2.1 Retina

The biological retina of mammals, including humans, consists of complex layered structures

as shown in Fig. 1.1. The photoreceptor layer contains approximately 6 million cones and 120

million rods cell that respond to the light and convert photons into electrical signals. The rods are

sensitive to light of low illumination and respond to even single photon [53], and distributed in

the outer fovea thus using in peripheral vision. On the other hand, the cone cells serve as high

acuity and color vision, and most of them are distributed in the nearby fovea. The sensitivity of

photoreceptors is adapted to light, thus our visual system has a large dynamic range over 1011-fold

of ambient light level [7].

The bipolar cells stimulate or suppress the signal of photoreceptor depending on their types:

ON-center or OFF-center. They have a receptive field to integrate light information of the center

and surrounding photoreceptors as shown in Fig. 2.1. These photoreceptors group are connected

by a horizontal cell and the number of connected photoreceptors varies as angles relative to fovea;

the number ranges from one at nearby fovea to thousands in the peripheral retina. Consequently,
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(a) (b)

Figure 2.1: Description of the center-surround receptive field. In (a), stimulated neurons and

related neurons are marked in red. The center and surround are represented as black and blue

cylinders, respectively. Refer to Fig. 1.1(a). In (b), the firing patterns of ON-center RGC were

depicted as vertical bars in response to the corresponding stimulus on the left. The stimulus

duration is indicated by the thick horizontal bar below. This figure is adopted and modified from

[7, 8].

photoreceptors near fovea are responsible for high acuity. Then, the receptive fields of ON-center

and OFF-center bipolar cells respond to the light in different ways. The ON-center bipolar cell

is excited and increases its firing rate when the light of the center photoreceptors is more in-

tense than the surroundings. Conversely, the OFF-center bipolar cell responds to the dark in the

center. Concretely, bipolar cells of 10 or more types can be classified based on their dendritic

connectivity with rods and/or cones, ON/OFF, and their physiological responses to light [54].

The integration of sustained or transient responses of bipolar cells can represent temporal infor-

mation of light, and each synapse encodes luminance or temporal contrast [55]. In Fig. 2.1(b),

the transient response to temporal contrast can be seen in the changes in stimulus frequency.

Similar to bipolar cells, Retinal Ganglion Cells (RGCs) have various center-surround recep-

tive fields, and the amacrine cells work laterally connecting bipolar cells and RGCs just as the
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horizontal cells mediate the signal transmission from the photoreceptors to the bipolar cells.

RGCs are divided into at least two main classes based on their functions: midget cell (or P-type

cell) and parasol cell (or M-type cell). Midget cells have a small and simple center-surround re-

ceptive field and the name “midget” comes from their small size of the dendritic tree and cell

body. About 80-90% of RGCs are midget cells and they constitute the parvocellular pathway

that responds to color and shape in a sustained response. On the other hand, parasol cells have

a large receptive field with relatively many cones and rods. Also, the name “parasol” is derived

from their relatively large size. About 5-10% of RGCs are parasol cells and they constitute the

magnocellular pathway that responds to motion and changes in luminance in transient response

with short latency.

Subsequently, the parvocellular pathway originated from midget cells engages the parvocellu-

lar layers of the Lateral Geniculate Nucleus (LGN), and its information arrives at primary visual

cortex (V1) in the brain. Similarly, the magnocellular pathway originated from parasol cells en-

gages the magnocellular layers of the LGN, and its information arrives at V1. Information leaving

V1 is divided into mainly two streams again: the dorsal stream (a.k.a. “where” stream) is mainly

derived from magnocellular pathway and the ventral stream (a.k.a. “what” stream) is from both

parvocellular and magnocellular pathway. The dorsal stream is responsible for analyzing object

location and motion, whereas the ventral stream is associated with shape, color, and object recog-

nition.

Besides, our visual system perceives motion in a variety of ways, such as direction-selective

RGCs responding to a specific direction in which light travels and simple/complex cells in V1

that respond to a movement of line segment by the convergent input of a series of LGN neurons

aligned in a line [56]. On the other hand, traditional CMOS cameras focus on capturing static

scenes and specialize in shape, color, and object recognition, just like the what stream in the

brain. Since the conventional cameras lack of where stream, silicon retina sensors have been

developed to deal with motion and temporal contrast information.
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Figure 2.2: Abstract schematic of single pixel in a silicon retina. Each pixel consists of three main

components: photoreceptor, differencing amplifier, and comparator [9].

2.2 Silicon Retina

Silicon retina, also known as neuromorphic cameras, dynamic vision sensors, or event cameras,

was introduced in [21]. They imitated the structure and operation in the vertebrate retina and

developed an artificial CMOS VLSI visual system whose subsystems are inspired by: photore-

ceptors, bipolar cells, and RGCs. In their system, phototransducing element induces photocurrent

proportional to the light intensity, a resistive network integrates the spatial and temporal infor-

mation by modeling the relationship between the bipolar and horizontal cells, and thus events are

generated like action potential in neurons.

Fig. 2.2 shows an abstract schematic of a single pixel in the recent silicon retina consisting

of mainly three components: photoreceptor, differencing amplifier, and comparator circuits. In

photoreceptor, light collected in a photodiode leads to the photocurrent Ip. When the gate-source

voltage, VGS , less than threshold voltage, VTH , is applied to the Metal-Oxide-Semiconductor

Field-Effect Transistor (MOSFET), the MOSFET operates in the subthreshold region or week-

inversion region, while causing a leakage current

Ip = µCd
W

L
V 2
T

(
exp

VGS − VTH
ηVT

)(
1− exp

−VDS
VT

)
(2.1)
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(a) ATIS [57]

(b) DVS [10] (c) DAVIS [15]

Figure 2.3: Sampled snapshot of silicon retina sensors. In (a) and (b), positive and negative events

are represented by white and black dots, and in (c), green and red dots. In (a), both images on

the left are the output of ATIS and the image on the right is the reference for indicating absolute

intensity.

in a unit of pA ∼ µA. For a photodiode generating photocurrent in a similar units to leakage

current, the photocurrent induces MOSFET with common source amplifier between drain and

gate nodes to generate logarithmic voltage similar to the above equation. In general, since ther-

mal voltage, VT , is about 26 mV at room temperature and VDS is larger than VT , thus, the term

exp(−VDS/VT ) goes to zero and the light-to-logarithmic circuit induces the voltage Vlog below:

VGS = Vlog − Vp, (2.2)

Vlog = ηVT log(Ip/I0) +K, (2.3)
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where Vp is the cathode voltage of the photodiode, I0 is the leakage current at VGS = VTH ,

and η is a coefficient relating to the physical characteristics of MOSFET. Then, the differencing

amplifier cuts off DC voltage by capacitor C1 and amplifies the AC component of input voltage

by passing through the capacitor C2. The gain of differencing amplifier in a small-signal model

is calculated from

vdiff = −Avb and
vlog − vb
1/sC1

=
vb − vdiff

1/sC2

, (2.4)

where vb is the voltage variance of the node between capacitors and vdiff is determined by the

ratio of capacitors, −C1/C2, i.e.,

vdiff = − C1

C2 + (C1 + C2)/A
vlog ≈ −

C1

C2

vlog, (2.5)

for a large voltage gain, A. Consequently, vdiff denotes the amplified changes in voltage from

the reference voltage. Then, the comparator triggers a positive or a negative event when the

voltage variance exceeds the threshold value. Immediately after transmitting the event, Vdiff is

reset to the reset level by the handshake protocol which is required to communicate information

between the pixel array and the host receiver to handle asynchronous event readout. The following

section describes well-known event-based sensors. Fig. 2.3 shows the output of the sensors to be

mentioned below, and the specifications of the sensors are summarized in Table 2.1.

2.2.1 DVS

Dynamic Vision Sensor (DVS) [10,11] is practically the first proposed dynamic vision sensor as a

product. The transistor-level schematic of DVS is shown in Fig. 2.4. As the same with the abstract

schematic above, the photodiode generates photocurrent and Mfb operating in the subthreshold

region induces a voltage in logarithmic scale. The cascode common-source amplifier with Mpr

as a current source consists of Mcas and Mn, and functions the same as an amplifier in Fig. 2.2.

Then, the voltage passes through the source follower composed of Mb2 and Msf . After that, the

voltage Vdiff is compared to the the ON/OFF threshold voltage that is determined by the gate

voltage of MOSFET MONn and MOFFn, thus triggering the transmission of an event with the

corresponding polarity.
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Figure 2.4: Transistor-level schematic corresponding to the abstract schematic in Fig. 2.2 and

DVS128 [10, 11].

The single comparator circuit is depicted in Fig. 2.5(a). The circuit consists of P-channel

MOSFET (PMOS) and N-channel MOSFET (NMOS), and the threshold of input voltage is

determined by Vb. With VSS = 5V, Vth,p = Vth,n = 0.5V, kp = kn = 200µA · V−2 and

Wp/Lp = Wn/Ln = 5/1, Fig. 2.5(b) shows the current-voltage characteristic of both PMOS

and NMOS without considering channel length modulation, and they are represented by blue

and gray curves, respectively [58]. Then, the output voltage is at the intersection of two curves,

since the drain currents of PMOS and NMOS are equal. The threshold voltage of comparator

circuit Vth,comp is determined by computing input voltage at which the saturated currents of the

two MOSFETs are the same:

1

2
kp
Wp

Lp
(VDD − Vth,comp − Vth,p)2 =

1

2
kn
Wn

Ln
(Vb − Vth,n)2, (2.6)

Vth,comp = VDD − Vth,p −

√
kn ·Wn/Ln
kp ·Wp/Lp

(Vb − Vth,n). (2.7)

Therefore, when the input voltage Vin decreases below Vth,comp, the change in voltage is triggered,

and the threshold voltage is adjusted by Vb as shown the black lines in the figure and (2.7).
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Figure 2.5: Single comparator circuit in Fig. 2.2. In (b), the current-voltage characteristic of

PMOS, Mp, and NMOS, Mn, of (a) are represented by blue and gray curves, respectively.

2.2.2 ATIS

Asynchronous Time-based Image Sensor (ATIS) [12] is developed to measure the absolute inten-

sity of photodiode together with temporal contrast of DVS circuit. Similar to the magnocellular

and parvocellular cells in the biological retina, ATIS pixel consists of a change detector that is

identical to DVS and an exposure measurement block that is sensitive to luminance of the scene as

shown in Fig. 2.6, respectively. To measure the exposure and gray-scale value of an image, ATIS

uses another photodiode, PD2, to collect the light and uses Pulse Width Modulation (PWM) time-

based encoding to generate a gray-level event. Thus, contrary to the conventional camera, ATIS

generates events and gray-level events asynchronously. The exposure measurement is triggered

only if the corresponding change detector transmits an event, and then MRst is reset making Vint

be near VSS and the capacitor is charged [13]. Following that, the photodiode in the exposure

measurement block induces the photo-current proportional to the light intensity, and the voltage

Vint is dropped and triggers the time interval tint by comparing Vint with VrefH or VrefL. Imme-

diately after the reset of exposure measurement block, Vint > VrefH > VrefL is satisfied, and by
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Figure 2.6: Schematic of single pixel in ATIS [12, 13] and the product. The figures are modified

from [13, 14].

logic properly switching Refsel, tint refers to the time it takes for the voltage Vint to drop from

VrefH to VrefL. Therefore, the gray-level value of the event is approximately calculated by 1/tint.

Although ATIS fulfills high temporal resolution for not only temporal contrast (event) but also

absolute intensity value, its fill factor is compromised due to its separate two photodiodes.

2.2.3 DAVIS

Another product to combine temporal contrast and absolute intensity in a single pixel is a Dy-

namic and Active-pixel VIsion Sensor (DAVIS) [15] and its schematic is shown in Fig. 2.7.

Contrary to ATIS above, Active Pixel Sensor (APS) and DVS share a single photodiode to detect

a temporal change and capture an absolute intensity. By setting TX = CR = VDD and after
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Figure 2.7: Schematic of single pixel in DAVIS [15].

disconnecting them, the voltage of Caps, Vaps is charged to reset voltage. Then, by disconnecting

CR and connecting TX, the photo-current induced by PD is charged in the capacitor and Vaps is

read out. Since DAVIS produces an image sequence with a fixed frame rate as the same as the

conventional cameras, it can exploit the legacy of traditional computer vision algorithms. How-

ever, it also means that APS of DAVIS has limitations of conventional cameras such as motion

blur, low dynamic range, etc.

2.2.4 Samsung DVS

Samsung DVS has increased frame resolution to recognize human interactions and shapes for

commercial applications. Samsung DVS Gen1 to Gen3 [16] are built with VGA resolution (640×

480 pixels), and Samsung DVS Gen4 [59] have achieved 1280 × 960 pixel resolution. Since the

pixel size is reduced due to high resolution, MLOG1 and MN2 (see Fig. 2.8) are designed to en-

hance the gain of photoreceptor. Also, their image sensor is fabricated by Back-Side-Illuminated

(BSI) process to increase fill factor. Besides, to handle massive events, Group Address-Event-

Representation (G-AER) is implemented by binding adjacent 8 pixels along the column into a

22



Figure 2.8: Schematic of single pixel in Samsung DVS Gen2 [16]

group. Each group of G-AER is accessed by a column address [0 ∼ 639] and a group address

[0 ∼ 59], and transmits a packet consisting of ON/OFF 8-bit data. However, it captures event data

by scanning columns across the sensor like rolling shutter cameras. In addition, because events

belonging to the same group have the same timestamp thus compromising temporal resolution,

this sensor is more suitable for batch processing rather than event-by-event operation.

2.3 Event Camera Datasets

In the dissertation, I have used publicly available datasets to validate the performance of the

proposed algorithm and compare it with the existing algorithms. The following sections describe

datasets used in this dissertation and the specifications of well-known datasets for event cameras

are summarized in Tables 2.2 and 2.3.

Chapter 3 employs DVSFlow16 [6] dataset to evaluate the accuracy of local plane fitting

method and DAVIS240C [60] dataset to evaluate the similarity score between two edgemaps

detected from gray image and events. Some of DVSFlow16 sequences are captured under the

purely translating motion in front of simple pattern images, thus it is easy to validate lifetime

estimation method. Also, few sequences of DAVIS240C provide high contrast scene whose edge
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is easily detected so that edge detection methods can be compared to each other.

In Chapter 4, Multi Vehicle Stereo Event Camera (MVSEC) [61] dataset is used to estimate

the accuracy of optical flow vectors and DAVIS240C dataset is utilized to assess the perfor-

mance of angular velocity in terms of accuracy and latency. Since MVSEC dataset provides the

ground-truth flowmap, the accuracy of the proposed optical flow estimation algorithm is vali-

dated by average end-point error. On the other hand, the accuracy and latency of angular velocity

are evaluated by comparing with the gyro of the Inertial Measurement Unit (IMU) under the 3

Degree-of-Freedom (DoF) rotational motion of the DAVIS240C dataset.

Chapter 5 estimates the angular velocity of the ego motion in dynamic environments that mov-

ing object exists and the qualitative and quantitative performances are validated on the author-

collected dataset, LARR-DE. Already, there exist datasets recorded in dynamic environments,

e.g., EVIMO2 [49], EED [38], but they are not captured under the rotational motion, and their

camera moves continuously during the sequences in order to persistently trigger events belonging

to the background. Meanwhile, datasets captured under the rotational motion, e.g., DVSFlow16,

DAVIS240C, does not include a rigid moving object. Therefore, I have collected datasets that in-

clude rotational motion, rigid moving object, and stationary moment in order to clearly evaluate

the strength of the proposed algorithm.
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3
Intra-pixel-area Events and Applications

The event camera, unlike traditional CMOS sensor, generates sparse event data at a pixel whose

log-intensity changes. Due to this characteristic, theoretically, there is only one or no event at

the specific time, which makes it difficult to grasp the world captured by the camera at a partic-

ular moment. An image reconstruction is the one of the method to recognize the current scene.

To construct image frame from events solely, there are two methods; one is to gather events ac-

cording to their timestamp and another is to stack a specified number of events. However, these

stacking events require tuning parameter, time window and the number of events, which are set

heuristically and critical to the quality of the event frame. In this work, I propose an robust visual

flow against pixel noise so that edgemap is reconstructed by estimating a lifetime of an event

from visual flow. A lifetime of event keeps the event alive until the event is generated in a nearby

pixel, thus the shape of an edge is preserved. To estimate visual flow robustly, I consider a pixel

area to fit a plane on SAE and call the point inside the pixel area closest to the plane as an Intra-

Pixel-Area (IPA) event. These IPA events help the fitting plane algorithm to estimate lifetime

robustly and precisely. Therefore, the proposed algorithm estimates visual flow precisely, and de-

tects edgemap better in terms of sharpness and similarity metric than the accumulation of events
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over fixed counts or time intervals, when compared with the existing edge detection algorithms,

both qualitatively and quantitatively.

3.1 Introduction

Event camera is a new type of vision sensor, which is motivated by the human eye, unlike standard

CMOS sensors [11, 15]. Event camera is composed of an independent circuit for each pixel and

these circuits generate events asynchronously when the log-intensity of light applied to the pixel

changes. These timestamped event streams have small bit-rate of tens or more kilobytes, whereas

the absolute intensity measurement of the standard camera has large bit-rate of tens or more

megabytes. By these virtues, the event cameras have several advantages such as low latency, high

temporal resolution, whereas the traditional camera captures image frame at a few tens of frames

per second, usually.

A wide range of fundamental computer vision applications, essential in autonomous naviga-

tion, object detection for avoidance, and Augmented/Virtual Reality (AR/VR), may significantly

benefit from the extremely low latency and fast response time of the event camera. However,

most algorithms for computer vision cannot be applied directly to the event cameras due the

new features mentioned above. So, there has been an increasing interest for developing algo-

rithms suitable for event cameras in applications such as optical flow [19, 35], Visual Odometry

(VO) [3, 52, 66], and Simultaneous Localization And Mapping (SLAM) [4, 23]. In this chapter,

I focus on the visual flow estimation for time-continuous edge detection algorithm of the event

camera, which could be utilized for edge-based VO [67–69] or SLAM [70].

Since the event camera produce event depending on the apparent motion, a visual flow can be

estimated from the motion history of events. Its simple implementation includes gradient of the

image of stacked events [19]. Also, the simplest way to detect an edge for the event camera is to

accumulate events in a specified number or fixed time interval. However, its result is too sensitive

to the speed of the camera or image because the value of accumulation volume is heuristically

determined as shown in Fig. 3.1(c) and (d). If the number of events generated per unit of time is
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(a) Gray image (b) Proposed (c) 1ms (d) 30ms

Figure 3.1: Extracted sharp edgemap of the proposed algorithm. The edgemaps are detected dur-

ing rotational motion.

less than the expected accumulation, the edge becomes sparse, otherwise, edge bleeding occurs.

Also, such accumulation dilutes the advantages of an event camera, low latency.

In the chapter, I aim to fit local plane and estimate visual flow robustly against noise using

Intra-Pixel-Area (IPA) pixel approach, then to detect thin edge pixels regardless of the speed

of the camera. Also, the proposed algorithm is designed based on an event-by-event basis, thus

updates the edge pixels with low latency and high temporal resolution.

3.1.1 Related Work

Since event cameras detect the apparent motion and produce the event at the edge of a scene,

visual flow is can be estimated from the history of events. Benosman et al. [18,19] and E. Mueg-

gler et al. [34] compute visual flow using spatio-temporal surface of events, also known as SAE.

They use Lucas-Kanade approach on an SAE [18], compute the gradient of the tangent plane to

an SAE using interative minimization [19] and RANSAC scheme [34]. Direction Selective (DS)

method [17] divides the orientation types into four, and filters the incoming event out with an Ori-

entationFilter using the correlation between the current and the past events. Due to the predefined

filter types, the direction of visual flow has only eight types.

J. Conradt et al. [71] estimate local optic flow as the inverse of the time difference between

adjacent events and find consistent global flow consisting of pan, tilt, and yaw by solving the least

square problem. J. Lee et al. [72] firstly extract Features from Accelerated Segment Test (FAST)
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keypoint in the grayscale image. They update expected polarization map for each incoming event

and track keypoints while estimating optical flow vectors.

Also, there are few methods developed for edge detection from the event camera data. Naı̈ve

methods are to accumulate events over a fixed time interval or numbers of events. However, in the

case of accumulating events over time, the size of the interval depends on the speed of the camera

because more events are generated when the camera moves faster. Therefore, the edge bleeding

occurs or enough events are not triggered. On the other hand, if an edge is constructed by a fixed

number of events accumulation, the quality of edge detection depends on the environment. A

sequence captured in a simple environment with little gradient generates fewer events than in

a complex environment. Consequently, it is difficult to determine a proper value of fixed time

interval or number of events manually.

In order to detect edge robustly against various environmental properties, some algorithms

have focused on detecting line edge in a structured environment. An Event-based Line Segment

Detector (ELiSeD) [73] computes gradient direction of SAE with Sobel filters, and clusters simi-

lar orientations within neighbour events. However, due to the above accumulation approach, edge

bleeding occurs, thus lines fitted on the clustered segments may become incorrect. In [74], their

event-by-event basis algorithm is inspired by the Hough transform and spiking neuron model. For

each event, Hough transform converts their position to the so-called spikes in the (r, θ) space. The

detected spikes stimulate the corresponding neuron in the (r, θ) space. This procedure is repeated

while the potential value of the neuron exceeds the threshold, and the algorithm generates the

line by using the triggered neuron. However, the performance depends on the resolution of (r, θ)

parameter space, and is significantly degraded in areas where multiple lines meet.

Some research aim to detect edges, not just line segments that are frequently found in artifacts.

F. Barranco et al. [75] detects the contour of foreground objects. They extract features from the

accumulated events such as orientation, timestamp, motion, and time texture. Then the boundary

is predicted from the learned Structured Random Forest (SRF) given DVS features. However,

since this algorithm is developed for object segmentation, it is prioritized to detect the boundary of

the foreground, and the performance of the overall edge extraction may be degraded. E. Mueggler
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et al. [34] estimates the lifetime of event from local plane fitting on the SAE based on event-

based visual flow [19]. However, naı̈ve RANdom SAmple Consensus (RANSAC) method could

not be successfully adapted for the event camera, thus causing imprecise estimation. Therefore,

I propose a IPA approach for RANSAC in order to estimate a local plane robustly and precisely.

Also, I quantitatively evaluate algorithms in terms of similarity metric, which have not been done

in most of the previous works.

3.1.2 Contributions and Outline

The main contributions can be summarized as follows:

1. I propose a IPA event approach for loss function of RANSAC, thus achieving robustness

against noise and enhancing the performance of visual flow and edge detection for event

cameras.

2. I evaluate the edge detection algorithms for the event camera by quantitatively measuring

similarity metric.

The rest of this chapter is organized as follows: In Section 3.2, I first characterize the event cam-

era and describe the details of the algorithms. Next, I validate the performance of the proposed

algorithm qualitatively in Section 3.4. Finally, Section 3.6 summarizes the extension of this chap-

ter.

3.2 Event Pre-processing

An event camera has independent pixels that detect light changes [11]. When the log-intensity of

light applied to a pixel increases or decreases above/below the factory threshold, ∆ log(I) = ±C,

the corresponding pixel (xi, yi) generates an event ei = (xi, yi, ti, pi) asynchronously. The event

consists of time-stamp, ti, uv-coordinated position of the pixel (xi, yi), and polarity, pi, where 1

or positive means log-intensity increments and 0 or negative means decrements.
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In many existing algorithms for DVS [19,34,76], SAE, Σe is used to obtain information about

when the event occurs in the corresponding pixel. When an event ei appears, the timestamp of

the event, ti, is assigned to Σe(yi, xi).

3.2.1 Event Buffer

Even in the fixed event camera, the camera generates many events which are regarded as noise.

These noise data can be suppressed by lowering the sensitivity of the event camera, but it also

reduces the number of meaningful events that occur where the image intensity changes. To deal

with noise events, I design an algorithm which precedes local plane fitting. The idea is that an

event occurs along the gradient edge of the image, and the edge with adjacent pixels will move

simultaneously on the image so that events will occur in a short time at adjacent pixels. In other

words, events of the same polarity are generated during a short period of time within milliseconds

along the same edge segment.

Fig. 3.2 illustrates the SAE in the situation where the several straight stripes move perpen-

dicular to the principle axis of the camera from t = 0 to t = 0.5. In the following evaluation

including Fig. 3.2, I set τmin = 0.01. As shown in Fig. 3.2(a), the raw event stream has a lot of

noise data between planes. By pre-processing raw events with the event buffer procedure, I can

reduce noise events successfully.

3.3 Event-based Visual Flow and Lifetime

In order to estimate the lifetime of events, I utilize the existing algorithm [19, 34]. They suggest

that the lifetime of an event means the time until the corresponding world point that has generated

the current event before triggers a new event, and also this period indicates the maximum amount

of time before a new event occurs nearby:

τ(x) = max ∆t s.t. ||x|| = 1, (3.1)

where ∆t = Σe(x + ∆x)− Σe(x) and x = (x, y) in pixel coordinates.
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(a) Raw events

(b) The filtered events

Figure 3.2: The (x, y, t) pointcloud of events with or without the event buffer. For the stripes

sequence which captures the several lines moving perpendicular to the camera principal axis.

Between each plane, the noise appears as an isolated point.

To find the steepest slope in the SAE, they estimate the normal vector of the plane, n =

(n1, n2, n3), which is fitted on the SAE locally, and visual flow, (vx.vy), and lifetime of the event,

τ , are calculated below:

vx = −n3/n1, vy = −n3/n2, (3.2)

τ(x) = 1/v = 1/
√
v2x + v2y =

1

n3

√
n2
1 + n2

2. (3.3)
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3.3.1 Local Plane Fitting

The event camera generates a digital event when the average brightness of pixel changes, and the

position of the generated event is fixed as the center point of the pixel area, thus the true position

of an analog event is not captured in the event stream. Therefore, I use RANSAC to robustly find

a local plane fitted on the SAE. For RANSAC, I use past events in an N ×N window including

the current event which is the center of the window. Next, I use k-mean clustering to separate

non-triggered or oldest event pixels from the N2 pixels around the current event by setting k as 2.

The initial cluster centroid are set to the minimum and the current timestamp. The set including

the current event is selected. Then, I choose the current event and two past events randomly in

the selected set to compute the candidate plane.

3.3.2 Intra-pixel-area Event

By the way, the gradient change occurs at some sub-pixel point inside the pixel theoretically, but

actually, the event is triggered by the change of the average brightness of a pixel, and the position

of the event indicates the center of the pixel. Therefore, I introduce an IPA event, which exists

somewhere inside a pixel area, Sx(δ):

Sx(δ) = {(x, y)|x− δ < x1 < x+ δ, y − δ < x2 < y + δ}, (3.4)

where x = (x1,x2) is the pixel of the current event. Thus, I choose the current event and float

event of two past events randomly in RANSAC. I compute loss function as the distance between

candidate plane, n s.t. nTx = 1, and IPA events, z. Then, the distance function is defined as

below:

d = min dist(n, z), ∀z ∈ Sx(δ), (3.5)

where

dist(n, z) =
|nTz− 1|
||n||22

(3.6)

which contains the current event.
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(a) w/o IPA under mild noise (b) w/o IPA under severe noise

(c) w/ IPA under mild noise (d) w/ IPA under severe noise

Figure 3.3: Description of the IPA event. After computing a local plane (gray) with or without

IPA event by RANSAC, the outliers (blue), inliers (red), and the current event (green) are drawn.

In (c), raw inlier events are represented as an unfilled red circle, whereas the closest points in

each intra-pixel area of inlier event are depicted as a filled circle. Also, the intra-pixel areas of the

inlier events are depicted as a black rectangle.
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Figure 3.4: F-measurement evaluation graph with a standard deviation of data noise. (a) F-

measure versus standard deviation of data noise depending on intra-pixel radius, (b) lifetime

error versus intra-pixel radius depending on data noise.

I show the result of IPA events in Fig. 3.3. It describes the estimation of local plane fitted on

the SAE around the current event (green). RANSAC is executed from events in a 5× 5 window,

and the value of events are given manually for simulation. In particular, the timestamp value of

events in Fig. 3.3(b) and (c) are contaminated by severe noise. Comparing the result of Fig. 3.3(a),

IPA event approach makes the candidate plane more likely to be voted on by more events, taking

into account the positional variation of past events, thus making more robust against the noise.

Furthermore, I analyze the influence of the IPA approach in terms of F-measure and lifetime

error as shown in Fig. 3.4. The event data of a 5 × 5 window used in the analysis are manually

made assuming that a single line passes, as shown in Fig. 3.3, which is a very common condition

in dataset sequence. Moreover, I add Gaussian noise in whole pixels or several randomly-chosen

pixels in Fig. 3.4(a) and (b), respectively. F-measure is defined below:

F-measure = 2× Recall× Precision
Recall + Precision

, (3.7)

where recall is a fraction of determined true among a total of true, and precision is a fraction of
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true among a total of determined true. Also, lifetime error is the difference between the truth and

the estimated values. For each evaluation, I take the average value by repeating a total of 1,000

times.

In Fig. 3.4(a), a higher value of the intra-pixel radius, δ, makes the RANSAC obtain more true

inliers robustly under globally-generated noise. However, as shown in Fig. 3.4(b), it also tends to

cause lifetime estimation error under scattered noise, because RANSAC may choose undesired

noise data due to large intra-pixel radius. From the above analyzes, δ is manually set to 0.25 for

the evaluation.

3.3.3 Constant Velocity Assumption

For the local plane fitting, it is assumed that an edge moves at a constant velocity locally. But in

practice, edge segments do not move at the same velocity, and they experience acceleration and

deceleration. If an edge undergoes acceleration, a lifetime of the edge is overestimated, thus edge

bleeding appears. In view of the accelerating situation, when an event is generated earlier than

expected before, edge bleeding can disappear by lowering the lifetime of the pixels present in the

opposite direction of the local SAE gradient heuristically as the following, rather than deleting

the only opposite pixel [34]:

τ(z) = max(τ(z)/γ, 0), if γ > 1, (3.8)

where

γ = −2 · 〈∇Σe(x), (z− x)/||z− x||〉, (3.9)

with z ∈ Sx(1) around the current event pixel, x, as mentioned in (3.4) and 〈·, ·〉 is inner product

in R2. On the other hand, the lifetime is underestimated when an edge is decelerating, and this

case could be a difficult problem to handle by the lifetime approaches. When the camera stops

completely in the moment, it is impossible to predict the lifetime of the latest pixel.
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(a) E. Mueggler et al. (b) Proposed

Figure 3.5: Accumulation of lifetime estimates. Yellow color means a large lifetime, whereas

blue color means a small lifetime.

3.4 Evaluation and Results

I qualitatively evaluate the comparison algorithms using a sequence provided by DVS (128×128

pixels) in [34]. The other sequences are gray images and events captured using DVS240C (240×

180 pixels) for quantitative comparison of edge detection performance.

3.4.1 Qualitative Evaluation

For qualitative evaluation, I first show the accumulation and histogram of lifetime estimates.

These analyzes are provided for only a stripe sequence because the sequence is captured at a

constant velocity making it easy to verify consistent lifetimes. Through the analysis of lifetime

accumulation in Fig. 3.5, it is possible to see how uniform the lifetime is in areas where the stripes

pass at a constant speed. Fig. 3.5 shows the accumulation of lifetime estimated during whole

stripes sequence [34]. Comparing (a) and (b), E. Mueggler et al.’s algorithm shows small lifetime

denoted as deep blue sometimes, while the proposed algorithm shows uniform values across each
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(a) E. Mueggler et al. (b) Proposed

Figure 3.6: Histogram of lifetime estimates. Gaussian curves fitted to the histogram are drawn

overlaid.

area, in top and bottom. Further, the analysis of lifetime histogram performed in [34] shows how

precisely the lifetime is estimated through two main peaks as shown in Fig. 3.6. As in the left

part of the lifetime histogram in each Fig. 3.6, the result of the proposed algorithm represents

a sharper histogram, which means that the proposed algorithm estimates lifetime precisely. The

mean and standard deviation of the Gaussian curve in each subfigure are (a) µ1 = 0.0042, σ1 =

0.0013, µ2 = 0.0093, σ2 = 0.0019 and (b) µ1 = 0.0057, σ1 = 0.0010, µ2 = 0.010, σ2 = 0.0019,

respectively.

Moreover, I present qualitative results on DVSFlow16 dataset [6]. Fig. 3.7 shows the snapshot

of the visual flow estimation on each sequence. As mentioned previously, DS produces visual flow

with only eight directions. The proposed visual flow method and LocalPlane estimate flow vector

using plane fitting on an SAE, but the proposed algorithm with IPA approach yields accurate

results on IMU APS rotDisk and IMU APS translBoxes sequences. In third row, the ground-

truth movement of black square is in the right direction, however, visual flow results including

mine are dominated by the gradient vector due to aperture problem.
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(a) Proposed (b) DS (c) LK (d) LP

Figure 3.7: Qualitative result of the proposed visual flow with gray image, DS [17], Lucas-Kanade

(LK) [18], and Local Plane (LP) [19] algorithms from left to right. The sequences used in each

row are IMU APS rotDisk, IMU APS translBoxes, and black square translating [6] from top to

bottom, respectively.
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Gray image Canny edge (GT) Gray image Canny edge (GT)

Proposed E. Mueggler et al. Proposed E. Mueggler et al.

1ms 30ms 1ms 30ms

(a) shape translation sequence (b) corridor sequence (self-collected)

Figure 3.8: Qualitative result of: gray image, ground-truth computed by Canny edge detector, E.

Mueggler et al.’s algorithm, 30ms, 1ms accumulation, and proposed algorithm for each sequence

in clockwise from top-left.
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(a) Similarity over time
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(b) Boxplot on the slow section (c) Boxplot on the fast section

Figure 3.9: Performance analysis of the whole sequence on the shapes translation sequence. The

camera moves slowly in the beginning and quickly in the latter part of the sequence. Thus, 1ms

and 30ms accumulation of event shows different performance depending on the speed of camera.
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Table 3.1: Evaluations for CDM value in % between Canny edgemap and the estimated edgemap:

proposed, 1ms and 30ms accumulation, and E. Mueggler et al.’s algorithm. Best results in each

sequence are in bold.

Section Proposed 1ms 30ms E. Mueggler

Slow
Median 30.34 17.83 27.90 19.06

IQR 5.25 10.05 9.69 10.83

Fast
Median 22.05 25.57 12.13 19.41

IQR 6.75 5.59 8.07 6.52

3.4.2 Quantitative Evaluation

In this section, I evaluate the algorithms by measuring similarity to the result of the traditional

edge detector from a gray image. For the similarity metric with an edge image, I use the imple-

mentation of Closest Distance Metric (CDM) in the work of [77, 78]:

CDMη(f, g) = 100

(
1− C(Mcd(f, g))

|f ∪ g|

)
, (3.10)

where η is the neighbourhood radius to find matching edge pixels between two images, f and g,

C(Mcd(f, g)) is the cost of a pair matched by closest-distance criteria, and |f ∪ g| is the number

of edge pixels belonging to f or g. In evaluation, η is set to 3, and I use 8-connected chessboard

distance metric as mentioned in [78]. In addition, for comparison, the results of the Canny edge

detector [79] are considered as groundtruth and the performance of algorithms is confirmed by

various Canny edge detector parameters because Canny’s algorithm can produce fine and well-

connected edges with 1-pixel width.

Fig. 3.8 shows the result of: gray image, Canny edge, proposed algorithm, 1ms, 30ms accu-

mulation, and E. Mueggler [34]. Although the lifetime estimation including mine and E. Mueg-

gler’s algorithm tend to leave tracks on the edge image, they show a thinner edge than the result

of accumulation. In particular, the performance of edge detection over time for a whole sequence

is shown in Fig. 3.9 and Table 3.1. The proposed algorithm shows relatively consistent perfor-
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Table 3.2: Computational load between w/ or w/o IPA approach. The computation time is

measured in seconds per 1k events. The most time-consuming procedures (fitting plane and

RANSAC) are compared to each other, and the usage ratio is the ratio of events used for pro-

cessing among total events.

Proposed E. Mueggler

fitting plane (sec) 0.411 0.389

RANSAC (sec) 0.344 0.335

usage ratio (%) 96.6 97.5

mance in terms of the CDM rather the other methods regardless of the camera motion as shown

in Fig. 3.9(b) and (c). Sometimes, the proposed algorithm shows bad performance denoted as

red-cross outliers when the camera motion is almost stationary. The reason is that a local SAE

gradient cannot be estimated precisely when the camera moves slowly. Besides, when the cam-

era stops, the lifetime estimation is theoretically impossible due to the lack of events. Note that

the performances of the accumulation methods depend on the speed of the camera in the bot-

tom figure. As can be seen from the InterQuartile Range (IQR) values in Table 3.1, that of 1ms

drastically decreases while that of the proposed algorithm slightly increases. This is because the

fast section does not include the stationary movement of the camera, whereas the slow section

includes stationary movement between changes in direction. Thus, the performance of 1ms accu-

mulation method is improved in the “fast and non-stop” section. At the same time, the CDM value

of the proposed algorithm slightly degenerates when it detects edges in the vignetting regions in

which the Canny edgemap is not detected.

3.5 Discussion

Table 3.2 summarizes the computational load of the proposed algorithm and E. Mueggler’s al-

gorithm, which are executed in MATLAB on i7 processor without GPU computing and the only

difference between the two algorithms is whether the IPA approach is applied or not. Because
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the distance function of a plane and a IPA event finds the minimum distance as mentioned in

(3.5), the computational load increases slightly in fitting plane and RANSAC processes which

consume most of runtime. The minimum distance between a plane n = (n1, n2, n3) and the IPA

of an event z = (xe, ye, te) is computed simply as

d =


0, if sign((nTz− 1) · (nTẑ− 1)) < 0,

min dist(n, z) = dist(n, ẑ) =
|nTẑ− 1|
||n||22

, otherwise,
(3.11)

where

ẑ =


x

y

t

 =


xe − δ · sign((nTz− 1)n1)

ye − δ · sign((nTz− 1)n2)

te

 . (3.12)

Due to simple modification, the increase in computational load is not very significant.

3.6 Summary

In the work, I proposed a IPA approach to estimate visual flow and detect an edge from events of

a dynamic vision sensor by virtue of the lifetime estimation with an event buffer. The designed

event buffer regards isolated events as noise and reduces them effectively. Also, the proposed IPA

approach makes the algorithm find local plane fitted on SAE robustly so that visual flow and the

corresponding lifetime is estimated precisely. Moreover, I analyzed the effectiveness of the IPA

approach by the F-measure versus the standard deviation of timestamp noise and the estimation

error versus the intra-pixel radius. For evaluation, I qualitatively compare the proposed visual

flow with the existing visual flow algorithms and the edgemap with lifetime estimation and naı̈ve

event accumulation approach. In addition, with the well-known edge similarity metric, I measure

the performance of the edgemap reconstruction algorithm quantitatively. Then, I confirm that the

proposed algorithm performs better in terms of sharpness and similarity to the Canny edge than

the accumulation of events over fixed counts or time intervals, and the existing lifetime estimation

algorithm. Further, by utilizing the detected edge, the proposed algorithm can be employed as a

pre-processing part of edge-based VO or SLAM for autonomous robots.
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4
Low-Latency and Scene-Robust

Asynchronous Optical Flow Stream

Estimation

Event cameras are bio-inspired sensors that capture intensity changes of pixels individually, and

generate asynchronous and independent “events”. Due to the fundamental difference from the

conventional cameras, most research on event cameras builds a global event frame by group-

ing events according to their timestamps or their number to employ traditional computer vision

algorithms. However, in order to take advantage of event cameras, it makes sense to generate

asynchronous output on an event-by-event basis. In this chapter, I propose optical flow estima-

tion algorithm with low latency and robustness to various scenes to utilize the advantage of event

camera by enhancing the existing optical flow algorithm. Furthermore, I estimate angular velocity

with low latency using the proposed optical flow stream. For the validation of algorithms, I eval-

uate the accuracy and latency of optical flow with publicly available datasets. Moreover, I assess

the performance of the proposed angular velocity estimation in comparison to the existing algo-
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rithms. Both validations suggest that the proposed asynchronous optical flow shows comparable

accuracy to the existing algorithms and the latency is reduced by half compared with the existing

block matching algorithm on average. Also, the proposed angular velocity estimation is superior

to the existing algorithms in terms of accuracy and robustness while showing low latency within

15 ms consistently.

4.1 Introduction

Event camera, also known as DVS, is a bio-inspired sensor which behaves differently from con-

ventional cameras. The event camera, first designed in [21] and practically proposed in [10, 11],

generates asynchronous events at a pixel whose log-intensity changes, unlike frame-based cam-

eras which capture the whole absolute intensity image. The asynchronous characteristic of event

cameras brings some advantages; it generates event steam with lower latency in microseconds

and grasps the motion relative to it with higher time resolution than the conventional camera.

However, this new paradigm makes it difficult to apply the existing image-based traditional

computer vision techniques, such as feature detection, tracking, optical flow, and motion estima-

tion, to event cameras directly. The current research on event cameras can be categorized into two

approaches. One builds an event frame by stacking events in a specified count or time window.

The other utilizes event asynchronously, which is also known as event-by-event basis operation.

A simple way to adopt the asynchronous approach is to use a single incoming event. However,

due to sensor noise, an event may occur where an apparent motion does not exist. Even if an

algorithm is performed with valid events only, it takes quite a bit of time to build a local intensity

map [23] and obtain the desired output for bootstrapping. This is because the individual event has

little information and it implies both spatial and temporal information not just either of the two,

which makes it difficult to interpret a single event.

In this chapter, I am interested in developing computer vision applications for event cam-

eras without deteriorating the low latency characteristic, one of the important strengths of event

cameras (see Fig. 4.1). The latency of the algorithm can be attributed to practical latency and/or
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Figure 4.1: Qualitative result of angular velocity estimation on shapes rotation sequence. The

bottom-right grayscale image denotes an image of stacked events over the time interval of [6.6,

7.4] seconds showing the camera movement. Bright values are recent events. Best viewed in

color.

theoretical latency. The practical latency includes actual computation time associated with pro-

gramming setup or hardware performance. Meanwhile, theoretical latency denotes the time to

gather events until estimation of optical flow or angular velocity is completed ignoring compu-

tation time. I aim to reduce theoretical latency that occurs independent of programming setup or

hardware performance. Particularly, I focus on estimating asynchronous optical flow stream on

an event-by-event basis. The reason why I choose optical flow is that it is one of the fundamental

elements in many computer vision algorithms, which can be utilized in feature tracking, motion

estimation, etc. To measure the latency of the optical flow stream, I estimate 3D angular velocity

from a bunch of optical flows. The evaluation suggests that the proposed angular velocity esti-

mation shows higher accuracy and lower latency than the other existing algorithms, which also
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implies a low latency of the proposed optical flow.

4.1.1 Related Work

For dealing with asynchronous event streams, there are roughly two main approaches. The first

type of research performs an algorithm on each incoming event without constructing event frames,

and makes use of the strength of event cameras. Each event has a small amount of information,

thus most research with an event-by-event basis implements filter-based [4,23] or network-based

algorithms [26]. However, since the time for a filter or a network to converge is not negligible, it

is an obstacle to the high-speed capability of event cameras.

Another type of research builds an event frame by stacking events according to their times-

tamp [43, 80] or grouping them with a specific number [35]. The former stacking method is very

similar to the frame of the conventional camera, which has a fixed frame rate. However, when the

camera moves slowly, the number of stacked events might be insufficient to obtain valid output,

because the event frame consists of a small number of events. Conversely, in a fast motion, bleed-

ing edges can appear in event frames [34]. On the other hand, the quality of the latter grouping

method depends on the degree of textures. In the scene with sparse textures, the number of events

in the group should be reduced to prevent edge bleeding, and the inverse relationship is also es-

tablished. Particularly, in the case of a scene with non-uniform textures, some areas of the frame

suffer from bleeding edge while others suffer from lack of events. Although some research cap-

ture the adaptive event frame with different time windows [52] or the number of events [30, 50],

their global event frame still loses details of the scene consisting of non-uniform textures because

their event frames stack events across the whole frame as mentioned above.

In summary, algorithms on an event-by-event basis suffer from slow convergence of a filter

or a network, which diminishes the advantage of event cameras: low-latency. On the contrary,

building an event-stacked image requires heuristic adjustment of the time window or the number

of events and also diminishes the advantage of event cameras: high time resolution or low latency.

For these reasons, in order to maintain the capability of event cameras, I design an optical flow

algorithm that is asynchronous not only temporally but also spatially.
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Optical Flow

The existing optical flow algorithms for event cameras are roughly divided into two categories as

above. Adaptive time-slice Block-Matching Optical Flow algorithm (ABMOF) [30,50] computes

optical flow at where the event triggers for every incoming event using the two most recent of the

previous time slices that are similar to SAE [81]. It produces asynchronous optical flow streams,

but latency occurs because it uses two of the past time slices, not including the current event.

Moreover, in the case of a scene where the texture is not uniform, events are rapidly accumulated

in some areas with complex textures, so a new time slice may be generated even though sufficient

events are not accumulated in other areas with sparse textures. LocalPlane [19] generates nor-

mal flow by using the gradient vectors, which is computed from the local plane fitting on SAE.

Although it estimates flow vector with negligible latency, local plane fitting approaches are vul-

nerable to the aperture problem, thus generating optical flows that are different from true optical

flows.

On the other hand, in [25, 31, 35, 43, 80], they aggregate events to estimate optical flow, thus

the latency of their algorithms depend on heuristic parameters such as time window or event

counts. Bardow et al. [43] use variational method for solving motion field map and brightness

image simultaneously. They discretize time window into K intervals each of length δt ms that

is set heuristically depending on the speed of motion in a scene. Contrast Maximization (CM)

framework [35] solves various problems such as optical flow, depth, and motion estimation by

maximizing the sharpness of stacked image of warped events according to the model parameter.

It uses a set of several tens of thousand events, which is determined heuristically depending

on the texture of a scene. Also, their simple framework can be adapted to use a set of events

within a time window and both versions are validated in this chapter. Zhu et al. [31, 80] train

Convolutional Neural Network (CNN) to learn to estimate optical flow in self-supervised and

un-supervised manners, respectively. However, CNN-based algorithms take image-like data as

input, and the input representation consists of tens of thousands of events. In order to handle

asynchronous and discrete events over time, there is research on combining event camera and
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SNN [25, 46]. Spike-FlowNet (Spike-FN) [25] present a deep hybrid architecture by integrating

SNNs for encoder and analog neural networks for residual and decoder layers. However, their

accumulators in between SNNs and analog neural network layers collect output from SNNs until

all event images have passed, thus increasing the latency.

Angular Velocity

Research on angular velocity estimation for event cameras includes an algorithmic method that

utilizes an events group [28, 35, 82] and a network-based method with an event-by-event basis

[26]. The former algorithm, referred to as CM, estimates angular velocity using a warping model

which transforms an event in (x, y, t) space into the same xy-plane with a rotation parameter. This

optimization-based method produces precise angular velocity, but it requires heuristic parameter

adjustment depending on the scene as mentioned before. In [26], they propose angular velocity

regression with SNN. The input representation of their network is a set of events within a time

window of 1 ms. The network successfully predicts the angular velocity, but it takes a settling

time of 50 ms due to SNN’s dynamics at the beginning of predictions and has not been validated

for a drastic motion.

4.1.2 Contributions and Outline

I tackle an optical flow and angular velocity estimation problem without any assumptions about

the environment, initialization, or additional sensors. Main contributions can be summarized as

follows:

• I propose a low-latency algorithm that uses only events and robustly estimates optical flow

in various environments.

• I present an accurate 3D angular velocity estimation algorithm, which fetches the proposed

asynchronous optical flow stream.

• I compute latency between estimates and ground-truth in an optimization-based method

and analyze algorithms thoroughly in terms of latency and accuracy.
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The rest of the chapter is organized as follows: In Section 4.2, I explain the proposed asyn-

chronous optical flow and angular velocity estimation algorithms. Next, I evaluate the proposed

algorithm and the existing algorithms on publicly available datasets to analyze the accuracy and

latency in Section 4.4. Then, Section 4.5 discusses additional validation of performance for vari-

ous configurations and future work related to limitations, followed by the summary of the chapter

in Section 4.6.

4.2 Asynchronous Optical Flow

4.2.1 Event Camera

Unlike conventional cameras which output a global frame, pixels of event cameras capture bright-

ness changes individually [11]. Each pixel emits an event when the pixel’s log-intensity change

exceeds the factory threshold. At that time, the i-th event ei consists of the corresponding pixel

location pi = (ui, vi), timestamp ti, and polarity pi that means the sign of log-intensity change:

ei = (ti,pi, pi). (4.1)

As many existing algorithms [19, 34, 35, 80] do, I also utilize SAE for extracting a high-level

information from event stream. SAE, also referred to as time slice or event frame, has the same

dimension as the camera frame, and the incoming event sets the value of SAE at the correspond-

ing pixel location as the timestamp of the event.

4.2.2 Local Time-Slice Update

ABMOF [30] computes optical flow where the event triggers for every incoming event. It divides

the image frame into grids of fixed size, counts the number of events accumulated in each grid,

and uses the count as a criterion for constructing a time slice to prevent edge bleeding from

the fast camera motion. However, each time slice does not consider the texture distribution, thus

erroneous optical flow can occur in areas with low texture. As can be seen from Fig. 4.2(a), details
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(a) ABMOF (b) Proposed

Figure 4.2: Snapshot of time slice of (a) ABMOF and (b) the proposed algorithm. Positive and

negative events are drawn with green and red dots, respectively. Since the proposed algorithm

does not construct a full-sized time slice, local time slices of pixels is drawn overlaid on a frame

for visualization purposes only.

are lost on the upper side of the time slice. To overcome the above limitation, I construct local

time slices for all pixels individually and compute optical flow between two slices, thus not only

enhancing accuracy in a non-uniformly textured scene but also reducing latency.

The proposed optical flow algorithm differs from ABMOF in two ways. First of all, contrary

to ABMOF that constructs globally shared time slices, the proposed approach maintains inde-

pendent queues for all individual pixels to construct local time slice. The capacity of the queue

is defined as twice the number of elements in the local time slice patch of size (w × w). The

front half of the elements forms the previous local time slice and the rear half constitutes the

current local time slice. Each queue fetches all incoming events within its local window and up-

dates its local time slice individually so that the update rate of each time slice depends on the

degree of local texture. In other words, the local time slices of a high-textured area in the frame

is updated more than that of a low-textured area. Hence, as shown in Fig. 4.2, the proposed al-

gorithm constructs local time slices with similar levels of event density for any region so that an

optical flow can be estimated accurately. Secondly, the proposed algorithm compares the current
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Algorithm 1 Asynchronous optical flow estimation
Input: ei = (ti,pi, pi) . single event

Output: OFi = (ti,pi,vi, dti) . optical flow

1: for all pj ∈ adj(pi) do . adjacent pixels in (w × w)

2: push ei into queue(pj)

3: end for

4: if queue(pi) is full then

5: construct SAEi,curr and SAEi,prev from queue(pi)

6: compute vi by matching SAEi,curr and SAEi,prev

7: dti ← mean(SAEi,curr)−mean(SAEi,prev)

8: return OFi

9: end if

time slice including the latest event to the previous time slice consisting of the front half of the

queue, whereas ABMOF finds the best matching block between two previous time slices. Be-

cause ABMOF does not use the current event when computing optical flow, its latency increases.

Consequently, the proposed approach utilizing the current event immediately estimates optical

flow with less latency.

Algorithm 1 demonstrates the pseudocode of the algorithm explained in Section 4.2.2, and

Fig. 4.3 illustrates steps 1 through 5 of Algorithm 1. For every incoming event, I push the event

into the corresponding queues which cover the pixel position of the event. Then, if the queue

is full, I divide the elements of the queue in half and stack them to construct two time slices.

In common with ABMOF, I use the diamond search method [83] for block matching algorithm

based on the Sum of Absolute Difference (SAD) between two time slices. For efficient and ac-

curate search, I find the best matching block quickly and iteratively in the current time slice with

a large diamond search pattern and make an exhaustive search within a small diamond search

pattern. After block matching, asynchronous optical flow stream contains the timestamp ti (the

latest timestamp of the queue) and pixel location of the event pi (starting point of the vector),
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Figure 4.3: Description of the local time slice. Each bin denotes the queue of a pixel, and a new

event (magenta cube) is pushed into adjacent bins. For visual simplicity, I illustrate the case for

patch size w = 3 in the 3D image and its vertical direction representing the queue capacity.

Elements in a full queue are divided in half, and construct the current and previous local time

slices, SAEcurr and SAEprev, respectively. Bright values are recent events.

optical flow vector in pixels vi, and the average time difference between two time slices dti so

that the optical flow can be converted to vi/dti having a unit of px/s:

OFi = (ti,pi,vi, dti). (4.2)

ABMOF computes optical flows through the diamond search for efficiency, so the vx, vy

values of the optical flow vector v are integers in pixels. Because of the nature of this search

method, the direction of an optical flow vector is discretized depending on the magnitude of the

vector. For example, if the best matching block in the current local time slice is one pixel away

from the previous local time slice, the angle of the vector has eight directions: (-1,-1), (0,-1),

(1,-1), (-1,0), (1,0), (-1,1), (0,1), (1,1). Nevertheless, the usage of local time slice can precisely

derive the magnitude of optical flow in px/s units, thanks to the high temporal resolution, and
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obtain accurate angular velocity from the bunch of optical flow vectors. However, I enhance the

accuracy of the previous block matching algorithm by computing an optimum optical flow vector

with a sub-pixel resolution using quadratic interpolation. The quadratic interpolation method

estimates an optical flow vector using scores of the surrounding of the previous optical flow

result. This additional procedure is able to compute optical flow in a precise direction even in a

small movement and improve the angular velocity estimation.

In practice, I do not construct time slices from the beginning repeatedly, but update them

gradually for each incoming event for efficiency. When a new event is fed into the queue, an

event in the middle of the queue begins to construct the previous time slice. At that time, the

previous time slice is only affected by the event in the middle and the oldest event which will

be popped. Also, the current time slice is modified by only the event in the middle and the new

event. In other words, the time slice stacks the timestamp of the event when fetching an event.

Next, for an event that will be popped, the value at the corresponding pixel location in the time

slice is reset as zero only if the existing value of the time slice is the same as the timestamp of the

event.

4.3 Angular Velocity Estimation

To deal with a single piece of data from an asynchronous optical flow stream, the use of filters

could be considered. Since the equation solving optical flow given an angular velocity and a

pixel location is a linear transformation and a linear operator to a Gaussian distribution also

results in the same distribution, the Kalman filter can be applied. However, the filter-based method

increases latency due to its dynamic characteristics and requires many tuning parameters for the

covariance matrices.

Because of the above reasons, I decide to compute angular velocity analytically from a bunch

of optical flows. Given the vector ω representing 3D angular velocity, optical flow under a pure

rotation is computed by vi = KR(ωdti)K
−1pi − pi, where K is the intrinsic matrix of the

camera, R(·) is the rotation matrix of the corresponding ω and time passed dti, and pi is image
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point in the pixel coordinates. In a short time interval, the equation can be approximated as below:

vi =

fx 0

0 fy

 xiyi −1− x2i yi

1 + y2i −xiyi −xi

 dtiω, (4.3)

where fx, fy are the focal length of the principle axes in pixels, xi, yi are image points in the

normalized image coordinates, and dti is the time interval while the image point has moved. Let

(4.3) be vi = Aidtiω for simplicity, and I find the angular velocity by solving the least-squares

problem:

ω = (AT
1:nA1:n)−1AT

1:nT
−1
1:nv1:n, (4.4)

where A1:n = [AT
1 , · · · , AT

n ]T ∈ R2n×3, v1:n = [vT
1 , · · · ,vT

n ]T ∈ R2n×1, and T1:n ∈ R2n×2n is

diagonal matrix composed of dti, i.e., T2i−1,2i−1 = T2i,2i = dti,∀i = 1, ..., n for n measurements.

In addition, let me assume that each vector of optical flow stream has 2D Gaussian pixel

noise, i.e., vi ∼ N(v̄i,Σv). Since the proposed asynchronous optical flow stream has integer

values vi = (vx, vy)i due to the diamond search method, I set Σv = 0.52I2 ∈ R2×2. Then, the

covariance of ω is

Var(ω) = (ATA)−1ATT−1Var(v)T−1A(ATA)−1

= σ2(ATA)−1ATT−2A(ATA)−1. (4.5)

To handle asynchronous stream input, the proposed algorithm iteratively computes the above

variation using all incoming optical flow, and estimates 3D angular velocity when det(Var(ω))

is less than the heuristic threshold value or the number of measurement n reaches the threshold,

nmax. The determinant of the covariance matrix is computed sequentially:

B1:n = B1:n−1 + AT
nAn/dt

2
n, (4.6)

C1:n = C1:n−1 + AT
nAn, (4.7)

det(Var(ω))n = σ2det(B1:n)/det(C1:n)2, (4.8)

where B1:1 = AT
1A1/dt

2
1 and C1:1 = AT

1A1. To reduce the influence of optical flow belonging to

dynamic object, I utilize RANSAC scheme to estimate accurate angular velocity.
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(a) indoor flying1 (b) outdoor day1

(c) shapes rotation (d) dynamic rotation

Figure 4.4: Snapshot of tested sequences. Positive and negative events between two successive

frames are overlaid with green and red dots, respectively, on the grayscale image.

4.4 Evaluation and Results

I evaluate optical flow and angular velocity estimation algorithms in terms of accuracy and la-

tency. The accuracy of optical flow is validated on MVSEC [80] sequences while the accuracy

of angular velocity is on DAVIS240C [60] sequences. Each snapshot of sequences is shown in

Fig. 4.4. The latency of optical flow and angular velocity estimation algorithms, which is a main

interest of this chapter, is computed by the optimization approach. Particularly, I compute the

latency of optical flow algorithms indirectly via back-end angular velocity estimation, since it is

difficult to compute the latency of optical flow directly. In evaluation, I set block width w as 25
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px, the capacity of queue as 300 for optical flow, i.e., 150 events exist in a single local time slice.

Also, the heuristic threshold for the determinant of the covariance of angular velocity is set to

0.001 ≈ 0.36 ≈ σ2
ωx
σ2
ωy
σ2
ωz

rad6/s6, and the maximum number of optical flows nmax to 150 for

angular velocity. These parameters are the same for all sequences with rich or poor texture of

scene, fast or slow motion.

4.4.1 Latency Computation

To estimate the latency of the proposed algorithms, I compare angular velocity estimates and

ground-truth motions. Even though DAVIS240C sequences have mainly sinusoidal movements,

the frequency spectrum of the angular velocity estimates is corrupted due to the estimation noise,

and thus it is difficult to estimate the phase difference between estimates and ground-truth. In-

stead, I compute latency by minimizing the sum of squared errors between the estimates and

ground-truth motions. Also, in order to focus on computing latency and consider overestimation

or underestimation and bias, I add scaleA = aI3 ∈ R3×3 and bias parameters b ∈ R3×1 for affine

transformation and optimize below:

min
∑
i

wiLδ (Ax̂est(τi + τd) + b− x̂gt(τi)), (4.9)

where τd is an important parameter meaning the latency which I pay attention to. τi is the i-

th timestamp of estimates xest, and x̂gt(τi) is an interpolated value of the ground-truth at τi.

To reduce the sensitivity of outliers, I use the Huber loss function Lδ(·). Also, to diminish the

influence of high-frequency noise, the weight wi is designed to be proportional to the magnitude

of the slope of low-pass-filtered xgt. In evaluation, because the noise level and accuracy are

different for each axis, I compute the latency of each angular velocity for each axis and report the

maximum latency among them.

4.4.2 Optical Flow Estimation

I validate the performance of the low-latency optical flow algorithm qualitatively and quanti-

tatively on MVSEC sequences. MVSEC provides multiple sensors’ data including events and
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(a) w/o compensation (b) w/ compensation

Figure 4.5: Histogram of end-point errors of optical flow vectors with or without vector compen-

sation on indoor flying1 sequence.

ground-truth flowmap of DVS as a form of a frame. Due to the frame-based ground-truth, I scale

the magnitude of asynchronous optical flow vector of the proposed algorithm by the ratio between

the time interval of flowmap and the time difference of optical flows. For example, the magni-

tude of optical flow with a small time difference is enlarged under the assumption that the optical

flow is constant during the interval between successive flowmaps. Moreover, since the events are

generated at the edge of a scene at which the true flowmap has discontinuities, the starting point

of optical flow cannot be matched with the corresponding point of the flowmap exactly under a

translational motion. Overall, to reduce faulty end-point errors caused by unsynchronized times-

tamps and discontinuity, I compensate the magnitude and the starting point of optical flows as

below:

v̂i = vi ×
tgt,k − tgt,k−1

dti
, (4.10)

p̂i = pi + vi ×
tgt,k − ti
dti

, (4.11)

s.t. tgt,k−1 < ti < tgt,k, ∀i,

where tgt,k is the timestamp of the k-th true flowmap. Since the true flowmap represents optical

flows based on the current scene, I validate asynchronous optical flows by projecting them onto
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Table 4.1: Evaluations of optical flow on ground-truth flowmap.

Sequence
Average end-point error (px)

Proposed ABMOF Zhu et al. [31] EV-FN Spike-FN

indoor flying1 1.09 1.28 0.58 1.03 0.84

indoor flying2 1.76 1.98 1.02 1.72 1.28

indoor flying3 1.54 1.74 0.87 1.53 1.11

outdoor day1 2.43 2.88 0.32 0.49 0.49

the synchronized flowmap. The effect of asynchronous optical flow compensation is shown in

Fig. 4.5. Thanks to the compensation using (4.10) and (4.11), the outliers in Fig. 4.5(a) caused

by the faulty comparison disappear, thus making distribution smooth. The compensation not only

banishes the outliers but also reduces errors overall.

For validation, I compare the proposed optical flow algorithm with ABMOF, EV-FlowNet

(EV-FN) [80]. I implemented ABMOF in C++ by referring to java tools for Address-Event

Representation (jAER) open-source project (http://jaerproject.org). However, ABMOF fails on

MVSEC sequences because the sequences have a non-uniformly textured scene. Under such se-

quences, a slice duration adjustment module of ABMOF does not work properly, thus slowing

down update rates and drastically reducing accuracy. Also, its outlier rejection discards a correct

optical flow under fast motions in DAVIS240C sequences. Thus, I disable slice duration adjust-

ment and outlier rejection. Instead, to validate the performance of ABMOF in a good condition,

I test ABMOF with the same fixed number of events as the proposed algorithm, but other param-

eters are the same as the original version [30]. Additionally, I also tested LocalPlane proposed

in [19], but its performance deteriorates in complicated realistic environments such as MVSEC

sequences because its optical flow is computed from the slope of the local SAE plane and differ-

ent from the true optical flow. Thus, I did not state the performance of LocalPlane in this chapter.

The code of EV-FN is available in public, and I use them in evaluations.

I test optical flow algorithms on four sequences which are preferred for validation in ex-
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Table 4.2: Evaluations for latency and accuracy of optical flow in static environments. Best results

are in bold.

Sequence
Average latency (ms) Average RMSE1 (rad/s)

Proposed ABMOF EV-FN Proposed ABMOF EV-FN

shapes

low 14.40 31.86 26.95 0.110 (0.108) 0.147 (0.137) 0.269 (0.264)

mid 5.15 9.76 20.56 0.228 (0.195) 0.350 (0.256) 1.545 (1.524)

high 2.93 7.09 20.48 0.350 (0.310) 0.691 (0.563) 3.082 (3.039)

whole 3.04 7.31 20.45 0.296 (0.261) 0.548 (0.442) 2.350 (2.311)

boxes

low 7.51 13.12 19.55 0.138 (0.134) 0.142 (0.136) 0.156 (0.146)

mid 1.86 3.97 20.91 0.297 (0.293) 0.361 (0.352) 1.199 (1.162)

high 0.59 2.35 22.57 0.355 (0.354) 0.380 (0.361) 2.666 (2.596)

whole 0.58 2.27 21.74 0.328 (0.327) 0.362 (0.346) 1.955 (1.903)

poster

low 8.21 10.39 16.01 0.238 (0.238) 0.186 (0.185) 0.202 (0.190)

mid 2.14 3.24 20.74 0.303 (0.302) 0.347 (0.341) 1.291 (1.267)

high 0.52 1.93 19.81 0.359 (0.357) 0.409 (0.389) 2.906 (2.835)

whole 0.49 1.87 19.91 0.328 (0.327) 0.371 (0.356) 2.009 (1.960)

dynamic

low 8.15 8.41 26.02 0.231 (0.229) 0.232 (0.227) 0.405 (0.391)

mid 4.35 6.46 22.40 0.242 (0.239) 0.272 (0.267) 0.539 (0.521)

high 1.80 3.23 21.83 0.289 (0.286) 0.341 (0.331) 1.525 (1.493)

whole 1.71 3.19 21.97 0.264 (0.261) 0.299 (0.291) 1.004 (0.980)

1The number in parentheses indicates the RMSE of zero-latency angular velocity that is calcu-

lated from (4.9).
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isting literature [25, 31, 80]: indoor flying1, indoor flying2, indoor flying3, and outdoor day1.

(4.6) and (4.7) show qualitative results of optical flow on MVSEC and DAVIS240C sequences.

Grayscale images are shown for visualization purposes only and I do not use them to estimate

optical flow. In ground-truth flow images, flow vectors with magnitude are displayed as a color

wheel with values, whereas the results of the algorithms are colored by direction only to verify

wrong results from a distance. Among them, although EV-FN produces a dense flowmap, for

Fig. 4.6, I mask its result with a binary image indicating whether there are any events in that

pixel, in order to compare with the others clearly.

In the first and second columns, ABMOF produces erroneous optical flows in the upper right

quadrant, where events are not triggered enough due to long distance and little apparent move-

ment. This is because ABMOF computes optical flow with the full-size time slices. Likewise, EV-

FN fails to estimate accurate optical flow sometimes as shown in the second column of Fig. 4.6

and in the fourth row of Fig. 4.7. Because EV-FN constructs event frame and produces dense

flowmap, it estimates accurate optical flow even on the long straight lines. However, as men-

tioned in the paper [80] as a limitation, it is hard to estimate the accurate optical flow in the fast

speed (first column) and highly dense scenes (fourth column). Especially, in the fourth column,

events are over-accumulated, thus the optical flows are under-estimated.

Quantitative results evaluated with image pairs one frame apart are shown in Table 4.1. The

performance of the proposed algorithm on indoor sequences is comparable with the other algo-

rithms but deteriorates in the outdoor sequence. This is because long straight lines belonging to

crosswalks and lane boundaries cause the aperture problem in a local time slice of both the pro-

posed algorithm and ABMOF as shown in Fig. 4.4(b). Also, whereas Zhu et al. [31], EV-FN, and

Spike-FN output flowmap as a form of frame and the true flowmap is also provided as a frame

synchronized with gray images for easy comparison, the proposed method and ABMOF generate

asynchronous frame-less optical flow. Hence, the compensated output of the proposed algorithm

and ABMOF, which are linearly extrapolated to the timestamp of the true flowmap, may degrade

accuracies in this comparison.

To compute the latency of asynchronous optical flow stream, I utilize the result of back-
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Figure 4.6: Qualitative results of optical flow on MVSEC sequences. Each column shows the

flowmap results on the indoor flying1, indoor flying2, indoor flying3, and outdoor day1 se-

quences from left to right. Also, each row denotes gray image, ground-truth flowmap, the pro-

posed algorithm, ABMOF, and EV-FN from top to bottom. Best viewed in color.
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Figure 4.7: Qualitative results of optical flow on DAVIS240C sequences. Each column shows

the flowmap results of the shapes rotation, dynamic rotation, boxes rotation, and poster rotation

from left to right. Also, each row denotes gray image, the proposed algorithm, ABMOF, and

EV-FN from top to bottom. In the poster rotation sequence, the result of EV-FN is adjusted eight

times brighter since it outputs a dark flowmap. Best viewed in color.
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(a) Proposed (b) ABMOF (c) EV-FN

(d) eSNN (e) CM

Figure 4.8: Qualitative results of angular velocity on poster rotation sequence of DAVIS240C.

Figures show zoomed-in plots for t ∈ [28.6, 29.5]s. The ground-truth (black solid line), estimated

(red, green, blue lines for ωx, ωy, ωz), and zero-latency (dashed line) are compared. Best viewed

in color.

end angular velocity estimation. The back-end process results in an additional latency of 0.02

(poster rotation) or 0.2 (shapes rotation) ms in average, but this value is added equally to the

compared algorithms, so it does not affect the performance comparison and is not subtracted in

Table 4.2. For the analysis of latency, I validate algorithms on DAVIS240C sequences, and Ta-

ble 4.2 outlines the average latency and accuracy of the angular velocity estimation algorithm

mentioned in Section 4.3, which fetches the output of the compared optical flow algorithms. Av-

erage RMSE is calculated between the estimated values and the angular velocity obtained from

the gyroscope [28]. Since the latency of the event camera is affected by the speed of motion,

I manually divide each sequence into three sections according to the degree of movement. The
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fourth row of each sequence represents an execution over the whole sequence. The proposed

algorithm is superior to the other algorithms in terms of latency and accuracy. ABMOF shows

slightly worse accuracy than the proposed algorithm and has an additional latency of up to 15

ms. Meanwhile, as mentioned in their paper [80], EV-FN loses accuracy when the camera moves

fast due to bleeding edge. Also, it shows a relatively large consistent latency of approximately

20 ms, half of the shutter speed, as it accumulates events and configures event frames for neural

networks. Summarizing Tables 4.1 and 4.2, the accuracy of the proposed algorithm is comparable

with the existing algorithms while significantly reducing the latency. Also, Table 4.3 shows the

effectiveness of parabolic fitting method that aims to enhance the preciseness of optical flow vec-

tor. The parabolic fitting method significantly improves the accuracy of the proposed algorithm

and ABMOF while maintaining a similar level of latency.

In comparing the proposed algorithm and EV-FN, since they estimate angular velocity from

optical flow in the same way, the accuracy of angular velocity is affected by the quality of optical

flow and latency. In order to eliminate the influence of latency and compare them in terms of the

accuracy of optical flow, I calculate the zero-latency angular velocity x̂est(τ + τd) from (4.9) by

time-shifting with the latency value, τd, and display its accuracy within parentheses in Table 4.2.

Because the zero-latency estimates of EV-FN are still less accurate than the proposed algorithm,

this analysis suggests that the proposed optical flow is more accurate than EV-FN on DAVIS240C

sequences. As supported by the fact that the ground truth angular velocity with high temporal

resolution evaluates optical flow well, the error of the proposed algorithm may have been lower

than in Table 4.1 if the ground truth flowmap was provided with a high temporal resolution.

4.4.3 Angular Velocity Estimation

For performance validation of angular velocity estimation, I utilize DAVIS240C sequences that

are captured under rotational motion, since MVSEC does not provide rotation sequences. Then, I

analyze average latency and accuracy as explained in Section 4.4.2. I compare the proposed algo-

rithm to the event-based SNN for angular velocity regression (eSNN) [26] and the implemented

version of CM frameworks [28].
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Table 4.3: Evaluations for latency and accuracy of optical flow w/ or w/o parabolic fitting in static

environments. Best results in each algorithm (w/ or w/o) are in bold.

Sequence

Average latency (ms) Average RMSE (rad/s)

Proposed ABMOF Proposed ABMOF

w/ w/o w/ w/o w/ w/o w/ w/o

shapes

low 16.79 14.40 32.16 31.86 0.098 0.110 0.128 0.147

mid 6.14 5.15 9.99 9.76 0.225 0.228 0.343 0.350

high 3.77 2.93 7.31 7.09 0.349 0.350 0.662 0.691

whole 3.89 3.04 7.52 7.31 0.294 0.296 0.526 0.548

boxes

low 6.63 7.51 11.61 13.12 0.122 0.138 0.114 0.142

mid 2.22 1.86 3.84 3.97 0.178 0.297 0.189 0.361

high 0.75 0.59 2.15 2.35 0.212 0.355 0.230 0.380

whole 0.72 0.58 2.117 2.27 0.193 0.328 0.198 0.362

poster

low 8.37 8.21 10.91 10.39 0.201 0.238 0.167 0.186

mid 2.41 2.14 3.55 3.24 0.246 0.303 0.223 0.347

high 0.56 0.52 1.89 1.93 0.263 0.359 0.279 0.409

whole 0.53 0.49 1.85 1.87 0.252 0.328 0.252 0.371

dynamic

low 8.14 8.15 8.23 8.41 0.180 0.231 0.161 0.232

mid 4.52 4.35 6.31 6.46 0.191 0.242 0.208 0.272

high 1.97 1.80 4.21 3.23 0.213 0.289 0.264 0.341

whole 1.90 1.71 4.17 3.19 0.199 0.264 0.207 0.299
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Table 4.4: Evaluations for latency and accuracy of angular velocity in static environments. Best

results are in bold.

Sequence
Average latency (ms) Average RMSE (rad/s)

Proposed eSNN CM Proposed eSNN CM

shapes

low 14.40 31.54 63.42 0.110 0.463 0.203

mid 5.15 35.59 20.05 0.228 1.291 0.678

high 2.93 35.93 14.57 0.350 2.578 1.154

whole 3.04 35.99 14.42 0.296 1.972 0.987

boxes

low 7.51 45.49 5.51 0.138 0.447 0.145

mid 1.86 39.90 0.39 0.297 1.333 0.380

high 0.59 38.00 0.26 0.355 2.451 0.396

whole 0.58 38.31 0.18 0.328 1.856 0.378

poster

low 8.21 39.74 7.37 0.238 0.458 0.250

mid 2.14 40.31 1.60 0.303 1.163 0.463

high 0.52 39.29 0 0.359 2.901 0.461

whole 0.49 39.40 0 0.328 1.998 0.443

dynamic

low 8.15 46.36 9.68 0.231 0.594 0.149

mid 4.35 43.67 5.63 0.242 0.628 0.160

high 1.80 41.69 2.44 0.289 1.314 0.183

whole 1.71 41.67 2.32 0.264 0.939 0.169
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In [26], they train SNN with simulated event stream with an interval of 100 ms and do not

penalize the error during the settling time of 50 ms. Because the regression time of 50 ms is too

short to compute latency under the slow motion, I divide test sequences by 100 ms intervals and

merge the angular velocity results of each interval. Then, I compute latency and accuracy using

only the outside of settling time, that is, 50% of the whole sequence. Also, since they provide test

code only, I use their open-source model pre-trained with a time step of one millisecond. On the

other hand, [28] fetches 15000 events in a single step and this original version is denoted as CM

here. However, their performance depends on the event grouping method or how many events are

stacked. I will discuss the influence of parameters in Section 4.5.1.

Fig. 4.8 shows the angular velocity estimates of the compared algorithms. As can be seen from

the time gap between dashed and solid lines, EV-FN and eSNN show large latency than the others.

For reference, I omit estimates during the settling time in the plot of eSNN. Since poster rotation

sequence has huge amounts of textures, CM also estimates angular velocity with a negligible

latency like the proposed algorithm and ABMOF. In Table 4.4, the proposed algorithm estimates

angular velocity with consistently low latency and high accuracy for all sequences. Although CM

shows better performance in terms of latency on boxes rotation and poster rotation sequences that

are captured in front of rich textures, its latency is large on shapes rotation and dynamic rotation

sequences: shapes rotation and dynamic rotation sequences were collected in front of texture-

less simple shapes and natural office environment, respectively. For the same reason, because

dynamic sequence includes long straight lines at the boundaries of walls or doors as shown in

Fig. 4.7, the performance of the proposed algorithm is slightly degraded, whereas CM that uses

batch processing shows the best results in that sequence. This is a fundamental limitation of the

proposed algorithm, related to the aperture problem, and it can be resolved by increasing the block

size but the computational efficiency is compromised. Overall, in the zoomed-in plot (Fig. 4.1),

the proposed algorithm shows much lower latency and higher accuracy than the other algorithms

in a low texture environment.
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4.5 Discussion

4.5.1 Robustness

For validating robustness against texture and motion speed which are observed in DAVIS240C

sequences, I test four more algorithms in Table 4.5: Kalman-Filter-based angular velocity esti-

mation using the proposed asynchronous optical flow stream (KF), the proposed angular velocity

estimation using ABMOF with the number of events, 100, that is fewer than ABMOF in Table 4.2

(ABMOF∗), and another two versions of CM framework (CM5k, CM50ms). CM5k fetches a less

number of events, 5000, that is heuristically chosen to have similar latency to the proposed al-

gorithm on shapes rotation sequence. On the other hand, CM50ms uses time windows of 50 ms

to collect events. In the table, latency and errors lower than the proposed algorithm are shown in

bold, and (-) denotes failure case whose error increases monotonically.

For KF, I implement a robust random-walk-model-based Kalman filter with a 6-dimensional

state including angular acceleration based on [84]. As mentioned in Section 4.3, latency is larger

than the proposed least-squares-based algorithm, but showing lower accuracy due to the proposed

accurate optical flow. A Kalman filter with a 3-dimensional state including rotation only has also

similar results.

In the case of ABMOF∗, it constructs time slices with a fewer number of events than ABMOF,

to decrease the latency of ABMOF tested previously. Consequently, its latency is reduced, but

its error becomes large overall. Like between ABMOF and ABMOF∗, CM5k loses accuracy on

dynamic rotation sequence, even though its latency is decreased. It is noteworthy that CM5k fails

on boxes rotation and poster rotation sequences that require more events due to the rich texture.

Conversely, CM50ms shows consistent latency but its accuracy degrades on the fast section of each

sequence. When I test CM5ms to further reduce latency, the accuracy becomes much worse.

Table 4.6 shows the evaluation results for more diverse CM frameworks. CM with more than

5k events has a greater latency, and its accuracy varies highly depending on the scene. Conversely,

CM with less than 5k events has lower latency, but the accuracy is degraded and the algorithm
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Table 4.5: Evaluations with different parameters. Results better than the proposed algorithm (in

Table 4.4) are in bold.

Sequence
Average latency (ms) Average RMSE (rad/s)

KF ABMOF∗ CM5k CM50ms KF ABMOF∗ CM5k CM50ms

shapes

low 16.47 20.16 16.40 28.54 0.126 0.140 0.138 0.136

mid 5.31 6.13 5.14 23.95 0.952 0.329 0.285 0.758

high - 3.79 2.91 26.94 - 0.454 0.397 1.960

overall - 3.84 2.93 26.56 - 0.401 0.353 1.450

boxes

low 12.16 11.27 - 22.92 0.095 0.333 - 0.123

mid 3.28 2.60 - 26.66 0.204 0.511 - 0.742

high 1.33 0.70 - - 0.263 0.566 - -

overall 1.26 0.67 - - 0.239 0.537 - -

poster

low 14.25 4.03 - 23.52 0.124 0.484 - 0.144

mid 3.31 1.63 - 24.90 0.218 0.498 - 0.654

high 1.54 0.81 - - 0.283 0.619 - -

overall 1.50 0.76 - - 0.250 0.570 - -

dynamic

low 15.28 5.36 - 27.85 0.167 0.502 - 0.213

mid 10.36 3.63 1.53 25.04 0.216 0.608 1.280 0.263

high 4.24 1.71 0 23.34 0.394 0.678 2.637 0.738

overall 4.22 1.56 0 23.39 0.309 0.616 2.641 0.491
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fails to estimate angular velocity successfully in a rich-textured environment. On the other hand,

CM with longer than 50 ms fails to minimize contrast due to edge bleeding, and CM with shorter

than 50 ms suffers from the lack of events in a rich-texture environment. On the contrary to the

above algorithms that utilize the image of stacked events, the proposed approach shows reliable

performance in various environments without fine-tuning parameters depending on the scene.

4.5.2 Future Work

In summary, to reduce the theoretical latency of optical flow estimation, I construct local time

slices for all pixels while increasing memory requirement and computational cost. In comparison

with ABMOF, the proposed approach increases the computational time by about 25 times, to

6.5kev/s (kilo events per second), on i7 laptop without GPU computing. However, since adjacent

queues fetch the same event at the same time for each incoming event as shown in Fig. 4.3,

parallel programming can enhance computation efficiency.

4.6 Summary

In the chapter, I aim to decrease the theoretical latency which is one of the important charac-

teristics of event cameras, leading to short response time and high accuracy. In particular, I es-

timate asynchronous optical flow stream, and 3D angular velocity with low-latency to compute

the latency of optical flow quantitatively. Contrary to the previous works, the proposed algorithm

builds and maintains local time slices for every pixel in the form of a queue, thus generating

optical flow that is independent of one another, like the event stream. Moreover, these highly

informative optical flows can provide the exact analytic solution of angular velocity, thus sat-

isfying low-latency. The overall evaluations suggest that the proposed algorithm shows higher

accuracy than the previous works while reducing latency significantly. Besides, the accuracy and

latency of the proposed algorithm are more consistent than other existing algorithms, regardless

of the degree of texture and the speed of the camera. In particular, the latency has been reduced

significantly in an environment with low texture. In summary, the proposed algorithm produces
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asynchronous data stream like a DVS camera, but the significance of the chapter is that the con-

tainer of the output is an optical flow having high-level information than an event. The proposed

asynchronous optical flow stream can also perform the same role as optical flow in traditional

computer vision problems such as object tracking, motion segmentation, and motion estimation.

Thus, the proposed event-based optical flow stream can be utilized to handle visual perception

problems for agile robotic systems and estimate the motion of the system with very low latency,

especially even in texture-less environments such as indoor corridors.
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5
Robust Angular Velocity Estimation in

Dynamic Environments

Event cameras are bio-inspired sensors that detect the brightness changes of pixels individually,

which is originated from apparent scene motion. Due to the characteristic of event cameras,

even fast moving objects are easily detected from a stationary event camera. However, at the

same time, moving objects may dominate the output of event camera and thus deteriorate motion

estimation performance of moving event cameras. In the paper, I propose a robust event-based

angular velocity estimation in dynamic environments where moving objects exist. To distinguish

between static and dynamic part in image frame, I exploit rigid-motion models for grid-based

cells and update their models by asynchronous optical flow stream. I demonstrate angular velocity

estimation with self-collected datasets published online. The evaluation results suggest that the

proposed algorithm estimates angular velocity robustly, and its accuracy is superior to the other

algorithm even in the existence of moving object.
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5.1 Introduction

Event cameras, also known as silicon retina or dynamic vision sensors, respond to the pixel-wise

brightness change. These sensors output the stream of a single “event” packet with position at

which pixel’s brightness increases or decrease. Thus events are mainly triggered by the apparent

motion which may be caused by camera’s motion or moving objects’ motion. This characteristic

makes easy to detect moving object in front of camera.

As compared with conventional cameras, event cameras have some advantages: low-latency,

high temporal resolution, and high dynamic range. These features of event cameras are results

from their asynchronous operation and suitable for agile robotic systems to achieve visual per-

ception. Nevertheless, sparse and asynchronous event stream can not be directly utilized for the

frame-based traditional robotics vision applications such as motion segmentation and estimation.

Some research process a number of events simultaneously to construct an event frame and ap-

ply the frame-based algorithms. However, grouping events approach compromises the benefits of

event cameras (low-latency and high temporal resolution) and the number of events must be set

heuristically.

In this paper, I estimate angular velocity on an event-by-event basis, which takes advantage

of event cameras, low-latency and high temporal resolution. Currently, existing event-based al-

gorithms tried to address the fundamental computer vision problems such as motion segmenta-

tion [36, 38], angular velocity estimation [28, 35], optical flow [30, 31, 80], etc. However, most

of them have assumed stationary environments where moving objects are not exist and have

evaluated their performance on well-defined datasets, e.g., DAVIS240C, MVSEC. However, real

environments include a various dynamic situation such as human interaction, other operating ma-

chines nearby. Particularly, data-driven cameras, like event cameras, generate large amounts of

events on moving objects, so it is necessary to distinguish dynamic foregrounds from static back-

grounds. Hence, I aim for robust angular velocity estimation in dynamic environments where

moving object is exist.

To estimate angular velocity robustly and respond to apparent motions, I exploit the previ-
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ously proposed research, low-latency and scene-robust optical flow estimation. By using asyn-

chronous optical flow stream and the proposed dual-mode motion models, the proposed algo-

rithm estimates angular velocity of ego-motion robustly in dynamic environments while separat-

ing dynamic foregrounds from an image without prior information, e.g., shape and the number

of objects. To validate the performance of algorithms, I collected a dataset that includes moving

objects at the office and road since there was no such dataset to the best of my knowledge. In

the evaluation, the proposed algorithm shows higher accuracy in angular velocity estimation than

other algorithms while successfully segmenting dynamic foreground in a static background.

5.1.1 Related Work

Similar to the most existing visual SLAM and visual odometry algorithms that assume that the

world the camera is looking at is stationary, most existing event-based motion estimation algo-

rithms [4, 23, 26, 28, 35, 82] assume stationary environments. However, since the event camera

is a kind of data-driven sensors, even small but fast object can dominate a large portion of event

stream, thus deteriorating the performance of motion estimation. Recently, some research address

the detection of an moving object, and the successful detection of dynamic foreground is related

to the performance of motion estimation which utilizes the remained region of static backgrounds.

Event-based Motion Segmentation by Motion Compensation (EMSMC) [36] segments mov-

ing objects by Expectation–Maximization (EM) algorithm. They update soft association matrix

between the K pre-initialized motions and event packet. Then, E-step refines the association

probability using a closed-form partitioning law and their M-step update motion parameter of

clusters by maximizing the weighted sum of contrast of IWE. For initialization, they exploit their

previous work, i.e., Simultaneous Optical Flow And Segmentation (SOFAS) [85], and estimate

the motion parameter of a total of Nl clusters. In the paper, I have implemented EMSMC algo-

rithm to compare with the proposed angular velocity estimation algorithm.

Similar to EMSMC, Y. Zhou et al. [5] utilizes the original version of contrast maximization

framework (CM) [28] and EM algorithm whose E-step updates labels minimizing the designed

energy terms and M-step refines the motion parameter of clusters given motion model. Because
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they construct spatio-temporal graph of events and estimate the labels based on the graph con-

nectivity of events, spatio-temporally smooth labels are obtained.

A. Mitrokhin et al. [38] proposes moving object detection and tracking. They revised contrast

maximization framework [28] by introducing event-count image and time-image to compensate

four dimensional motion: x-shift, y-shift, zoom, roll rotation. Through their global motion seg-

mentation procedures, the four-parametrized motion of static backgrounds is estimated itera-

tively. Then, moving objects are detected as an area having large value of time-image as similar

to [86]. Their second work [49] presents learning approach for motion segmentation. A depth net-

work is trained in supervised approach with ground-truth depth, and pose network is trained with

the mask information of objects. They predict the motion of moving objects and the camera with

a mixture model. Another work [40] segments moving objects by exploiting PointNet++ [42] and

training a Graph Convolutional neural network (GConv). They fetch a 3D graph of event stream

in (x, y, t) space and infer the event cloud belonging to moving objects. But Gconv operates on

large time intervals about several hundreds of milliseconds.

All of the above research construct event frame as an input of a motion compensation algo-

rithm based on contrast maximization or a network. They stack events according to the num-

ber [5,36] of timestamp of events [38,40,49], and these event-frame-based algorithms need to be

tuned heuristically depending on the scene.

5.1.2 Contributions

The main contributions can be summarized as follows:

1. I propose a robust event-based angular velocity estimation algorithm in dynamic environ-

ments. It segments an image into dynamic foregrounds and static backgrounds on a grid-

wise and estimates the motion of both parts.

2. I design a dual-mode motion model for asynchronous optical flow stream. It separates

the dynamic foregrounds from the static backgrounds and tracks them with specified IDs

without prior information such as shape, number of them.
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Figure 5.1: Pipeline description of the algorithm. Flowmap of grid-based optical flow V (k) is

depicted based on a color wheel. For visual simplicity, optical flow stream are denoted as unit

vectors and cgrid = rgrid = 5. H(k) and G(k) are the result of motion hypothesis search and

refinement. Motion temporal matching yields ∗G(k) from the label L(k) and the past. An IDs in

H(k), G(k), ∗G(k), L(k) are indicated as eigen colors, whereas the probability P are represented by

the mixture of eigen colors. In age map α, the brighter denotes the older.
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5.2 Motion Segmentation

The proposed algorithm consists of two stages: motion segmentation and dual-mode motion

model management. Motion segmentation is further divided into spatial segmentation and tem-

poral matching. Motion spatial segmentation aims to segment the image frame depending on the

rotation model. This stage does not consider temporal transition, but only spatial segmentation,

thus each segment is not identified. In other words, it is unknown which segment in the current

result corresponds to which segment in the previous spatial segment result. In this regard, the pur-

pose of motion temporal matching is to identify the results of successive spatial segmentation.

Further, in order to reduce the influence of erroneous segments and consider a situation in which

a stationary object suddenly moves, dual-mode motion models update the probability of which

model is dominated in that cell.

In the motion spatial segmentation procedure, I first fetch a total of nflow asynchronous optical

flow vectors and construct grid-based flowmap by averaging fetched optical flow vectors in each

cells. Then, I randomly select m flow vectors nearby among valid cells as samples for RANSAC

to generate motion hypothesis. Next, all flow vectors are validated by the motion hypothesis,

iteratively, nhyp hypotheses are found. Finally, these hypotheses is refined by inlier subset and is

merged with similar parameters though Density-Based Spatial Clustering of Applications with

Noise (DBSCAN). Fig. 5.1 describes the details of the motion spatial segmentation process and

brief dual-mode motion model management.

5.2.1 Event-based Optical Flow

In order to segment an image frame depending on the rotation model, I exploit low-latency and

scene-robust optical flow stream, which is previously proposed. It is because a rotation model can

be explicitly estimated using at least three optical flow vectors, whereas three or more events are

required to estimate the model using the event just as it is. However, since the proposed optical

flow stream is generated asynchronously like event stream, when I classify each incoming optical

flow vector as static or dynamic by using filter-based approach, the motion of static part is easily
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Figure 5.2: Construction of a grid-based optical flowmap. (left) raw optical flow stream, (middle)

center-aligned flowmap, and (right) flowmap with intra-pixel-area approach.

corrupted by dynamic object and it is hard to recognize which event cluster belongs to the static

backgrounds. Therefore, to segment incoming spatial information instantly, I divide an image

frame of size (w × h) into a grid with a fixed spacing size sgrid in pixels, then collect incoming

optical flow vectors into the corresponding cell including the pixel position of the vectors. After

collecting a certain number of vectors, each cell takes an average vector on the collected optical

flow vectors, v̄i ∈ R2. Therefore, the input of motion spatial segmentation is an flowmap of grid-

based optical flow V and its elements are v = (v̄i), where n is the number of valid cells having

an average optical flow vector and satisfies 0 ≤ n ≤ ncell = cgrid × rgrid = w/sgrid × h/sgrid
with the number of cells, ncell.

As mentioned above, the optical flow of a cell vi is obtained as the average of the optical flow

observed inside the cell area. Additionally, the starting point of vi should be compensated. If the

optical flow of the cells are placed in the center of the cells, as shown in the middle of Fig. 5.2, the

cell in which a single optical flow is observed shows wrong starting point. Accordingly, I adopt

the intra-pixel-area (IPA) approach proposed in Chapter 3 to compute the starting point of vi well

described by a given rotation motion. The right figure in Fig. 5.2 describes the optical flow result
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through IPA approach. The starting point of vi of i-th cell, x∗i , are computed by

u∗i = argmin
u

1

2
||f(ω,xi + u)− vi||22, s.t. ||u||∞ ≤ Wδ, (5.1)

x∗i = xi + u∗i , (5.2)

where ω is previously estimated rotation vector, xi is the center position of the i-th cell, vi is

optical flow vector of the cell, and f(ω,x) is a function computing optical flow with a given

motion and position in the same manner as (4.3). Then, similar to (4.4), rotation vector is re-

computed by

ω∗ = argmin
ω

∑
i

1

2
||f(ω,x∗i )− vi||22. (5.3)

At the implementation stage, ω is estimated with center-aligned optical flow vectors firstly,

and then I compute u∗ of (5.1) by Newton’s method instead of optimization method. by letting

f(ω,xi + ui)− vi be zero, the equation is expressed as the below by 1st order Taylor expansion:

e = f(ω,xi + ui)− vi ≈ f(ω,xi) +
∂f

∂x
ui − vi = 0. (5.4)

Thus,

ui =

(
∂f

∂x

T∂f

∂x

)−1
∂f

∂x

T

(vi − f(ω,xi)). (5.5)

In addition, to limit the infinite norm of u below δ in (5.1), ui is scaled by

u∗i = ui min

(
1,

Wδ

||ui||∞

)
. (5.6)

5.2.2 Motion Hypothesis Search

In the search process, a point is randomly selected by weighting with min-error vector, s = (si) ∈

Rn, whose i-th value is defined as follows:

si = min (min
h
eh,i, 1), i = 1 . . . n, (5.7)
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where

E = (eh,i) = [e1, . . . , en] =
[
dist(ω1,v), . . . , dist(ωnhyp

,v)
]T (5.8)

=


dist(ω1, v̄1) · · · dist(ω1, v̄n)

... . . . ...

dist(ωnhyp
, v̄1) · · · dist(ωnhyp

, v̄n)


is an matrix representing distance error eh,i between the h-th hypothesis and flow vector of the

i-th cell.

The min-error value measures how well the hypothesis is generated in the corresponding cell.

A cell with the high min-error tends to belong to an inappropriate motion hypothesis, which

results in a high probability to be chosen, consequently accelerating the convergence rate. The

outer min operator prevents an cell with erroneous flow vector from being selected repeatedly

with excessive probability. Thus, a one cell with high min-error value is selected with a high

probability at the first. Then, I select (m − 1) vectors randomly near the chosen vector. Finally,

the motion hypothesis ω can be estimated from the selectedm vectors using (5.3) and be inserted

into hypothesis set Ω as a new hypothesis, iteratively. The result of motion segmentation using

hypothesis search is denoted as H in Fig. 5.1

5.2.3 Motion Hypothesis Refinement and Clustering

Motion hypothesis refinement aims to calculate precise rotate vector and find multiple cells be-

longing to the same rotation motion. I first calculate distance error using (5.8) for optical flow

vectors among all valid n cells. This process is designed to consider the situation where a part of

a rigid object could appear in multiple regions on an image at the same time, in which case, I re-

gard the multiple regions as belonging to the same object. Then, I re-estimate a motion hypothesis

refined using the enlarged inlier set. For more details, please refer to [87].

In order to find distinct motions from the motion hypothesis set Ω = {ω1, . . . ,ωnhyp
}, I utilize

the DBSCAN, since DBSCAN does not require the number of clusters and is robust to noise. In

the process, hypotheses are refined as the algorithm re-organizes nhyp hypotheses into ng distinct
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motions, which is represented by integer matrix G ∈ Ncgrid×rgrid whose elements are distributed

from 1 to ng in an natural number and cgrid = w/sgrid, rgrid = h/sgrid is the dimension of grid

cell. Then,G(l) denotes the motion spatial segmentation results at the l-th timestamp and its value

means the index of the motion to which the corresponding pixel belongs.

5.2.4 Motion Temporal Matching

Motion spatial segmentation successfully classifies optical flow vectors depending on their rotate

motions, however, it does not identify vectors whether they are belong to static backgrounds or

dynamic foregrounds. In other words, the element value of G(k−1) does not correspond one-on-

one to the same element value of G(k), and does not denote the same motion. Therefore, motion

temporal matching method finds matching pairs set between the result of the previous motion

spatial segmentation G(k−1) and the current result G(k).

The segment matching method calculates a kind of matching coefficient between two segment

groups and finds corresponding segment pairs set P̂ between different timestamp. The matching

coefficient C(k,l) between spatial segmentation results at the previous k-th and the current l-th are

computed from the constant position assumption. The constant position assumption means that

distributions of the corresponding cell are not changed unexpectedly in a short time, thus I can

consider computing a matching coefficient as intersection over union (IoU) method. However,

IoU focuses on the overlap and coincidence of areas. Thus, IoU may yield a low value when

the same object appears in different sizes as the result of spatial segmentation. This is possible

because I fetch an asynchronous optical flow stream and the data depends on the velocity of an

object. Therefore, I compute matching coefficient by

N
(k,l)
i,j√

N
(k)
i N

(l)
j

(5.9)

while reducing the influence of large segments by square root [87]. However, the data input

of [87] and this algorithm are different in RGB-D-based dense flowmap and event-based sparse
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flowmap. Consequently, I have revised (5.9) as

C
(k,l)
ij =

∑
(Kσ ∗ δ(G(k), i))� δ(G(l), j)√∑

δ(G(k), i)
∑

δ(G(l), j)
, (5.10)

where the operator ∗ denotes 2-D convolution andKσ ∈ R3×3 is a kernel matrix with all elements

1, which is designed to assign the same weight to adjacent cells. Also, the element ofB = δ(A, x)

with a matrix A and a scalar x is

B = (bij), (5.11)

bij =

 1, if aij = x,

0, otherwise.

and the operator � denotes element-wise multiplication. Also, I consider the motion of segments

as a kind of cost between two segments:

C
(k,l)
ij =

1

1 + ||ω(k)
i − ω

(l)
j ||22

, (5.12)

Thus,
∑
δ(G(k), i) is the number of cells belonging to the i-th motion in the segmentation result

at the k-th timestamp. Then, a matching pairs set is

P(k,l) =
{
P(k,l)
i

}
=
{(
P(k,l)
i,prev,P

(k,l)
i,curr

)}
(5.13)

=

{(
i, argmax

j
C

(k,l)
ij

)}
.

When max
j
C

(k,l)
ij is less than heuristic threshold thcorr, the i-th motion of the previous segmenta-

tion result is missed and/or the j-th motion of the current segmentation result is newly appeared.

This j-th motion can be considered as the motion of new object or erroneous result of segmen-

tation. To find the best matching pairs set, I compute correlation score score(k,l) between the

previous k-th and the current l-th segmentation results as the average for max
j
C

(k,l)
ij greater than

thcorr only. Then, the best matching pairs set ∗P(l) at the current l-th segmentation is

∗P(l) = P(km,l), (5.14)
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where km is

km = argmax
l−tm≤k<l

score(k,l), (5.15)

Finally, I rearrange index matrix G(l) to ∗G(l) through ∗P(l) by substituting the value of G(l) with

the second element of each corresponding pair. From now, I will call the index matrix ∗G as a

label in the following paragraphs, while I have called the index matrixG as a segmentation result.

Through this process, I control over-segmentation problem by merging over-segmented segments

and track the object that appeared previously. Also, a new object with difference motion can be

detected from the index of small correlation less than thcorr. Moreover, in order to distinguish

between sparsely distributed noise or densely distributed object, I calculate a kind of spatial

density for all segments:

V
(l)
i =

∑
(Kρ ∗ δ(G(l), i))� δ(G(l), i)∑

δ(G(k), i)
(5.16)

is the spatial density of the i-th segment at the l-th timestamp, and the kernel Kρ is

Kρ =
1

8


1 1 1

1 0 1

1 1 1

 (5.17)

to focus on measuring for density of mass.

5.3 Dual-mode Motion Model Management

Since the event camera output sparse and asynchronous event stream, the proposed optical flow

estimation algorithm produces sparse and asynchronous optical flow stream. Although I collect

several hundreds of optical flow vectors to classify them according on rotate motion hypotheses,

the flowmap composed of collected vectors shows high sparsity. Because of the sparsity of the

input data, simple kernel is applied in (5.10) and the spatial density in (5.16) is calculated to reject

erroneous segment. In the paper, I apply the modified version of dual-mode simple Gaussian

model [87, 88] to adapt to event-based asynchronous input data.
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Dual-mode motion model consists of apparent and candidate models with a size of cgrid ×

rgrid × nhyp as the same with the x, y−size of ∗G(l). The size of depth dimension of both models

is the same with the maximum number of motion hypothesis, nhyp. The depth dimensional vector

P
(k)
i ∈ Rnhyp×1 denotes the probability vector of the i-th grid at the k-th timestamp. The h-th

element of the probability vector P (k)
i represents the likelihood of the i-th cell belonging to the

k-th motion. Both models have another parameter α(k)
i ∈ R representing the age of the i-th cell.

The purpose of the candidate model and age parameter is to detect a new motion while distin-

guishing and rejecting erroneous segmentation result, whereas the apparent model aims to track

the static backgrounds and the dynamic foregrounds robustly by help of the candidate model.

In the following, I explain how both models are updated and detect dynamic foregrounds. Also,

the probability vectors of both models are compensated by sparse optical flow vectors to update

the corresponding cell denoting the same object regardless of local motion. This compensation

method for sparse optical flow is described in the next place.

5.3.1 Motion Model Update

The basic principle is that when a label identical to the label of the current model is fetched, the

corresponding model is updated. The label of the model of the i-th cell Li ∈ N denotes the index

of maximum value in the probability vector Pi ∈ Rnhyp×1:

Li = argmax
1≤h≤nhyp

Pi(h) (5.18)

Each model of the cell consists of a probability vector and an age, which are updated for certain

conditions as mentioned below:

P
(k+1)
i =

α̃
(k)
i

α̃
(k)
i + 1

P̃
(k)
i +

1

α̃
(k)
i + 1

vec(∗G
(k)
i ) (5.19)

α
(k+1)
i = α̃

(k)
i + 1, (5.20)

where vec(∗G(k)
i ) ∈ Rnhyp×1 is a binary-valued vector whose ∗G(k)

i -th element only is one and

the others are zeros, and ∗G(k)
i is the result of segment matching algorithm in the k-th timestamp
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as mentioned in Section 5.2.4. For example, vec(2) = (0, 1, 0, 0, 0) for a brief case of nhyp =

5. Also, P̃ (k)
i , α̃(k)

i are the values of motion-compensated model, which will be discussed in

Section 5.3.3.

However, under-segmentation and/or over-segmentation can occur and update wrong models.

Similar motions of different objects can lead to an under-segmentation, and over-segmentation

is mainly caused by the inaccurate motion of grid or non-rigid motion. Although asynchronous

optical flow stream is validated in terms of accuracy in Chapter 4, averaging them in a grid

may degrade the accuracy (see Section 5.2.1). Therefore, the candidate model complements the

apparent model while preventing the erroneous segmentation from updating the apparent model

directly. The probability vector, AP , and age, Aα, of the apparent model are updated as follows:

AP
(k+1)
i =


Aα̃

(k)
i

Aα̃
(k)
i + 1

AP̃
(k)
i +

vec(G
(k)
i )

Aα̃
(k)
i + 1

, if G(k)
i = AL

(k)
i ,

AP̃
(k)
i , otherwise,

(5.21)

Aα
(k+1)
i =

min (Aα̃
(k)
i + 1, αmax), if G(k)

i = AL
(k)
i ,

Aα̃
(k)
i , otherwise.

(5.22)

On the other hand, the probability vector, CP , and age, Cα, of the candidate model are updated

as follows:

CP
(k+1)
i =



Cα̃
(k)
i

Cα̃
(k)
i + 1

CP̃
(k)
i +

vec(G
(k)
i )

Cα̃
(k)
i + 1

, if G(k)
i 6= AL

(k)
i ,

0, else if Cα(k+1)
i = 0 and Cα

(k)
i > 0,

CP̃
(k)
i , otherwise,

(5.23)

Cα
(k+1)
i =

min (Cα̃
(k)
i + 1, αmax), if G(k)

i = CL
(k)
i ,

max (Cα̃
(k)
i − τ · (t(k+1) − t(k)), 0), otherwise,

(5.24)

where t(k) denotes the k-th timestamp value, and AL(k), CL(k) ∈ Ncgrid×rgrid are the label of the

apparent and candidate models at the k-th timestamp, respectively. τ is a parameter for decaying

the age of the candidate model. The apparent model has a more simple update procedure than the
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candidate model and its label AL(k) updated at that time produces the result of motion segmen-

tation. Contrary to the apparent model, the probability vector of the candidate model is updated

for the input different from the label of the apparent model. By doing so, the candidate model

detects different motions of a new object and, at some point, this new movement appeared in the

apparent model by a swapping procedure as will be described. Erroneous segments generally do

not reappear in the same location as the previous, the age of the candidate model whose label is

not matched with the segmentation result is decayed and finally, the probability of that candidate

model is initialized.

5.3.2 Motion Model Swapping

The two conditions that the apparent and candidate models are swapped with each other is when

the age of the candidate model reaches the maximum age αmax or is larger than that of the cor-

responding apparent model. This model swapping is designed for preventing the apparent model

from updating erroneous segments or missing new movements. In relation to the second case, let

me consider the situation where a moving object just stops. The object is classified into dynamic

foregrounds before and immediately after they stop. At that time, the label of the corresponding

apparent model belongs to the dynamic foregrounds. After that, since the segmentation result

implies that the object is static backgrounds, the corresponding apparent model does not updated

whereas the candidate model is updated. Consequently, the age of the candidate model increases

and then both models will be swapped with each other when conditions above are satisfied. The

probability vector and age of both models are swapped as follows:

AP
(k+1)
i = CP̃

(k+1)
i ,

Aα
(k+1)
i = 0, (5.25)

CP
(k+1)
i = 0 ∈ Rnhyp ,

Cα
(k+1)
i = 0.

The output of the dual-mode motion model is derived from the probability vector of the ap-

parent models with some criteria. I denote this output matrix as motion label,M (k)
i ∈ Rcgrid×rgrid .
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𝐴𝛼(𝑘−1) 𝐴𝛼(𝑘) 𝐴 𝛼(𝑘)

𝑖-th cell𝑗-th cell𝑅𝑖𝑗

ҧ𝑣𝑖

𝑆𝑖
(𝑘)

= {𝑗, 𝑗 + 1, 𝑖 + 1, 𝑖 + 2}

Figure 5.3: Description of how the parameters of cell are compensated. The average optical flow

of i-th cell is v̄i, and then the parameters of i-th cell are compensated based on the parameters of

cells that are elements of S(k)
i .

The i-th element of motion label is updated as the label of the corresponding apparent label if

the apparent model is updated or swapped. This partial update of motion label prevents the algo-

rithm from prejudging the label of an unobserved or unmeasured motion of cell while preserving

the previous motion label. In particular, since the event camera generates events with a static

background only by its ego-motion, the motion label is maintained while there is no event. Un-

der the assumption that the portion of the static background of the motion label is maintained

continuously, the proposed algorithm estimates the angular velocity robustly.

5.3.3 Motion Model Compensation

In Section 5.3.1, the probability vector and age of both models are updated depending on the

coincidence of the segmentation result and their label. These update criteria for motion model

is based on the assumption that each cell represents a fixed point in the world coordinate con-

sistently without considering the ego-motion of the camera. Consequently, the change in camera

viewpoints causes the discrepancy between the segmentation result and the label of both models.

Therefore, the parameters of both models are compensated through warping by sparse optical

flow vectors.

To reflect the local optical flow on the model consisting of an probability vector and age value,
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I use area-weighted interpolation. For cell that has valid optical flow vectors (see Section 5.2.1),

the corresponding motion model are compensated individually on the two-dimensional. I consider

a cell which has an valid optical flow vector, and this optical flow vector is calculated by the

average of fetched optical flow vectors. As shown in Fig. 5.3, let this cell denote the i-th cell of

apparent and candidate model in the current k-th timestamp. Then, the end-point of the reverse

of its optical flow vector might indicate a sub-grid point in the previous (k−1)-th timestamp. So,

the model parameter of the i-th cell is set to the interpolated parameter of the adjacency cells of

that end-point. I denote the set of these adjacent cells overlapping with the i-th cell as S(k)
i and

an index j is an element of the set, i.e., j ∈ S(k)
i , and the maximum size of the set |S(k)

i | is four

since I deal with two dimensions. The overlapping area between the i-th cell and the j-th cell as

Rij . Also, I denote a weight for interpolation as ωij which are set to be proportional to Rij and

normalized to
∑

j ωij = 1. Then, the compensated probability vector and age are calculated as

follows:

P̃
(k)
i =

∑
j∈S(k)i

ωijP
(k−1)
j , (5.26)

α̃
(k)
i =

∑
j∈S(k)i

ωijα
(k−1)
j . (5.27)

5.3.4 Angular Velocity Estimation

To take advantage of event cameras, e.g., high temporal resolution, the proposed motion segmen-

tation module and angular velocity estimation module of Chapter 4 are executed in parallel. As

mentioned before, to segment image frame into static or dynamic, enough optical flow vectors

should be collected into each cell. For better performance, the motion segmentation module re-

quires a larger number of input data than the angular velocity estimation module. After the motion

label is estimated, the angular velocity estimation module begins to collect optical flow vectors

belonging to the static backgrounds, and computes the angular velocity of ego-motion with high

temporal resolution through the criteria explained in Section 4.3.
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(a) indoor (b) outdoor night

(c) outdoor day1 (d) outdoor day2

Figure 5.4: Snapshot of the collected sequences. In each figure, a gray image and colorized event

image are represented. Positive and negative events are drawn with green and red dots, respec-

tively.

5.4 Evaluation and Results

I evaluate angular velocity estimation algorithm in terms of accuracy and latency. To the best of

my knowledge, since there is no dataset which includes rigid moving object under rotational mo-

tion, I have collected dataset using DAVIS240C camera. For all tested sequences, the parameters

of the proposed algorithm are the same: The number of sampling points and the searching radius

in the motion spatial segmentation are set to m = 3 and rsearch = 2 pixels. The parameters of

DBSCAN are set to pmin = 1, ε = 0.5. The number of fetched optical flow nflow is 1000 and

the spacing size of grid sgrid is 5 pixels. Also, the number of motion hypothesis nhyp at initial-

ization step is 15 and its minimum number of supported vectors is set to 15. For motion model

management, I set αmax and τ to 3 steps and 50 s−1, respectively. In the following, I describe the

collected dataset.
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Table 5.1: Descriptions of the dataset collected in dynamic environments.

Name Duration Description

indoor 17.6 seconds Manual motion of planar object

outdoor day1 5.4 seconds Day, One vehicle, Camera stops at the end

outdoor day2 2.4 seconds Day, One motorcycle

outdoor night 6.9 seconds Night, Three vehicles

5.4.1 Dataset

In order to evaluate the proposed algorithm properly, I collected a dataset using DAVIS240C

camera and its gyroscope for ground-truth. Each sequence is composed of event stream, 8-bit

grayscale images with a size of 240×180, and IMU data. The dataset includes two types of

moving objects: human’s interaction or vehicles. The first type of sequence depicts a situation

where a planar object moves in front of a camera in an office environment, and the second type is

recorded in road environments. The snapshot of each sequence is displayed in Fig. 5.4. Also, in

order to take advantage of event cameras, I included a sequence captured in night environment.

Especially, to the best of my knowledge, the unique point about the collected dataset is that it

contains a sequence in which the camera stops, that is outdoor day1. Table 5.1 describes the

details of the collected sequences and the download link of the dataset is available online at:

http://sangillee.com/ pages/larr-dvs-de-dataset

5.4.2 Angular Velocity Estimation

I evaluate robust angular velocity estimation, the previous work in Chapter 4, and the existing

EMSMC algorithm in terms of latency and accuracy. The previous and the current algorithm

have a common method to compute angular velocity, which are based on analytic solution. But,

as the current algorithm is newly proposed in this chapter, the proposed algorithm computes
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Figure 5.5: Simplified flowchart of the compared algorithms. The modules implemented in each

algorithm is depicted inside dashed box.

angular velocity with a bunch of selected optical flows belonging to a static background, whereas

the previous algorithm uses all fetched optical flows.

As mentioned before, EMSMC segments the motion of events in (x, y, t) space with motion

compensation that is similar to contrast maximization framework. Since the algorithm uses K-

means method, it requires the number of clusters in the initialization stage. Also, although a

cluster can be eliminated when the cluster does not supported from any event, a cluster can

not be added when a new object appears. Moreover, it only segments motions, thus it can not

identify which segment belongs to the static background. Therefore, I have modified EMSMC

algorithm to be compared properly to the proposed algorithm: (i) I re-initialize K clusters when

any cluster is eliminated. (ii) I manually select a specific cluster to be compared to the motion of

static background. Related to the second item, I record the motion of all clusters and divide the

segments according to the re-initialization branch point. Then, I evaluate each segment compared
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to the ground-truth motion and select a segment showing lower RMSE.

Moreover, because EMSMC updates the probability of an event belonging to a cluster and

computes rotate vector with the probability as a weight for optimization, the computed motion

of clusters might not be refined and precise due to the non-zero weight of event belonging to the

moving object. Thus, I have attached an additional motion update module with hard association

to make the weight of event have a value of 0 or 1. I denote this modified version of EMSMC as

EMSMC-Hard from this place.

In validation, I also evaluate the algorithm previously proposed in Chapter 4 and a repre-

sentative version of contrast maximization framework to refer to the angular velocity estimation

without considering moving objects. The work in Chapter 4 and Chapter 5 have a common angu-

lar velocity estimation module. Thus, I can verify the improvement through the added modules in

this chapter. Also, I evaluate the contrast maximization that is a core module of EMSMC, and the

number of event group is set equal to that of EMSMC, i.e., 10000. Fig. 5.5 shows the simplified

flowchart of the compared algorithms in the paper. Contrast maximization (CM) and EMSMC

yield angular velocity value from the parameter of motion model directly, while EMSMC-Hard

re-estimates motion parameter using hard association.

Fig. 5.6 shows the examples of internal parameter of compared algorithms on tested se-

quences. The different models and clusters in the proposed algorithm and EMSMC, respectively,

are described by different colors to each other. Particularly, in the proposed algorithm, since the

motion of green colored models are detected for the first time, static background are denoted as

green models. Then, the motion of moving objects are detected and identified as different colors.

In the case of EMSMC, a new ID is assigned to a newly generated cluster each time initialization

is performed again. This is why the color of the clusters in the second row of Fig. 5.6 is differ-

ent from that of the other rows. For the first, third, and forth rows where multiple motions exist,

EMSMC divides two clusters successfully whereas IWE of CM is corrupted. However, for the

second row where moving vehicle dominates most of event stream, EMSMC is not able to iden-

tify static background. On the contrary, the proposed algorithm not only distinguishes different

motions but also identifies movements in a static background.
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Image Proposed EMSMC CM

Figure 5.6: Snapshot of the internal parameter of compared algorithms on tested sequences. Each

row indicates the indoor, outdoor day1, outdoor day2, and outdoor night sequences from top to

bottom. Also, each column denotes gray image, the proposed algorithm, EMSMC, and CM from

left to right. Best viewed in color.
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Table 5.2: Evaluations for latency and accuracies of angular velocity in dynamic environments.

Best results are in bold.

Sequence Proposed (Ch.5) Proposed (Ch.4) EMSMC EMSMC-Hard CM

Av
g.

la
te

nc
y indoor 15.52 8.72 5.66 5.54 5.88

outdoor day1 14.32 12.59 10.22 11.71 8.91

outdoor day2 14.40 11.26 11.23 8.02 9.35

outdoor night 28.01 24.22 20.28 19.63 18.78

Av
g.

R
M

SE

indoor 0.263 0.537 0.937 0.808 0.874

outdoor day1 0.132 0.409 0.779 0.449 0.539

outdoor day2 0.145 0.153 0.391 0.390 0.542

outdoor night 0.158 0.155 1.242 0.347 0.294

A
cc

ur
ac

y
(h

ig
he

r
is

be
tt

er
) ε
<

0.
53

indoor 0.392 0.317 0.188 0.185 0.211

outdoor day1 0.708 0.588 0.515 0.433 0.667

outdoor day2 0.624 0.691 0.654 0.532 0.559

outdoor night 0.609 0.622 0.493 0.463 0.430

ε
<

0.
52

indoor 0.850 0.695 0.503 0.478 0.526

outdoor day1 0.983 0.775 0.761 0.726 0.770

outdoor day2 0.976 0.963 0.852 0.814 0.661

outdoor night 0.965 0.968 0.871 0.835 0.856

ε
<

0.
5

indoor 0.961 0.809 0.721 0.722 0.738

outdoor day1 0.999 0.816 0.841 0.821 0.822

outdoor day2 1.000 0.996 0.895 0.886 0.754

outdoor night 1.000 1.000∗ 0.966 0.979 0.938

∗This superscript indicates the best result, when compared by expanding the number of decimal

places.

101



(a) indoor

(b) outdoor night

Figure 5.7: Angular velocity estimates of compared algorithms on (a) indoor and (b) out-

door night sequences. The dark shaded region represents the time interval in which a moving

object appears. For visual simplicity, only ωx is illustrated. Best viewed in color.
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(a) outdoor day1

(b) outdoor day2

Figure 5.8: Angular velocity estimates of compared algorithms on (a) outdoor day1 and (b) out-

door day2 sequences. The dark shaded region represents the time interval in which a moving

object appears. For visual simplicity, only ωx is illustrated. Best viewed in color.
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t = 0 s t = 2 s t = 6 s t = 13 s t = 17 s

Figure 5.9: Qualitative results of the proposed angular velocity on indoor sequences. The ground-

truth (deep red, green, blue), estimated (red, green, blue lines for ωx, ωy, ωz) are compared in the

upper plot. The lower plot shows the estimated angular velocity of moving object for each axis.

The shaded region implies the existence of a moving object. Best viewed in color.
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t = 5 s t = 7 st = 0 s t = 1 s t = 3 s

Figure 5.10: Qualitative results of the proposed angular velocity on outdoor night sequences. The

ground-truth (deep red, green, blue), estimated (red, green, blue lines for ωx, ωy, ωz) are compared

in the upper plot. The lower plot shows the estimated angular velocity of moving object for each

axis. The shaded region implies the existence of a moving object. Best viewed in color.
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t = 4 s t = 5 st = 0 s t = 2 s t = 3 s

Figure 5.11: Qualitative results of the proposed angular velocity on outdoor day1 sequences. The

ground-truth (deep red, green, blue), estimated (red, green, blue lines for ωx, ωy, ωz) are compared

in the upper plot. The lower plot shows the estimated angular velocity of moving object for each

axis. The shaded region implies the existence of a moving object. Best viewed in color.
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t = 1.5 s t = 2 st = 0 s t = 0.5 s t = 1 s

Figure 5.12: Qualitative results of the proposed angular velocity on outdoor day2 sequences. The

ground-truth (deep red, green, blue), estimated (red, green, blue lines for ωx, ωy, ωz) are compared

in the upper plot. The lower plot shows the estimated angular velocity of moving object for each

axis. The shaded region implies the existence of a moving object. Best viewed in color.
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In Table 5.2, I compute the latency, error, and accuracy of the proposed and the existing

algorithms by comparing with IMU. The latency is computed by (4.9) in an optimization-based

method. The average RMSE is calculated by averaging each RMSE for three axes. Furthermore,

I evaluate each algorithm using threshold metric below:

Threshold: % of ωi s.t. mean(|ωi − ωi,gt|) = ε < thr, (5.28)

where ωi the i-th estimate of angular velocity and ωi,gt denotes the corresponding ground-truth

value. This metric is inspired from [89], that introduces the threshold metric for evaluating the

accuracy of predicted depthmap. Since angular velocity can have three-dimensional negative val-

ues unlike depth values having one-dimensional positive values, max and fraction in their paper

are substitute with mean and absolute error, respectively. Note that the performance of EMSMC

and EMSMC-Hard is evaluated by comparing estimates close to the ground-truth value among

motion parameters of its multiple clusters with the ground-truth, because they can not identify

background or objects, but only segment them spatially. I divide their motion parameters of mul-

tiple clusters by 10 timestamp intervals, then find the cluster that best matches the ground-truth

value. Subsequently, the estimate of EMSMC and EMSMC-Hard to be compared to the ground-

truth value is formed by putting estimates close to the true value in each interval together.

The RMSE of the proposed algorithm is superior to the other algorithms, while the latency is

increased by few milliseconds compared with the previous work. The dynamic characteristic of

dual-mode motion models may affect an increase in latency. Note that, for outdoor day2 and out-

door night sequences, accuracies are relatively good in each algorithm because moving objects

appear in a small part of the image. For the same reason, the algorithm proposed in Chapter 4

shows the best result on outdoor night sequence. From the threshold analysis, as the threshold

value increases from 0.53 to 0.51, accuracy becomes high. Threshold accuracy is able to verify

the performance of algorithm while being less contaminated by abnormally high errors. For all

sequences, EMSMC shows higher RMSE than EMSMC-Hard. However, EMSMC shows better

performance than EMSMC-Hard in terms of threshold accuracy. This implies that the perfor-

mance of EMSMC is degraded by several large errors as shown in Fig. 5.7 and Fig. 5.8. Never-
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theless, threshold accuracy suggests that EMSMC is better than EMSMC-Hard, which is related

to the reason why they [36] have decided to use soft association. Overall, the algorithm proposed

in Chapter 5 shows lower RMSE and higher accuracy than the other algorithms including the

algorithm in Chapter 4.

Furthermore, Fig. 5.7 and Fig. 5.8 show the angular velocity estimates of the comparison

algorithms on the x-axis only for visual simplicity. The dark shaded region represents the time

interval in which a moving object appears. When a moving object appears, the performance of

other algorithms is degraded, while the proposed algorithm robustly and accurately estimates an-

gular velocity. In particular, the proposed algorithm can identify the stationary motion of static

background as shown in Fig. 5.8(a). Also, Figs. 5.9 to 5.12 show the angular velocity estimation

result of the proposed algorithm and ground-truth values for the three axes. The upper plot shows

the estimated angular velocity of the camera, and the lower plot shows the estimated angular

velocity of moving object for each axis. The angular velocity of moving object denotes the rela-

tive motion to the camera, which will be discussed in detail in Section 5.5.2. The images below

describe the scene of the main moments.

5.5 Discussion

5.5.1 Intra-pixel-area Event

Previously, the IPA approach proposed in Chapter 3 helps plane fitting method to compute more

precise visual flow and detect edgemap. Similarly, the IPA approach makes a grid-based flowmap

more accurate. The benefit of IPA approach is verified by simulated analysis in Fig. 5.13 and eval-

uation of real environments in Table 5.3. In simulated verification, each data point is generated by

10000 simulation tests with varying rotation motion, position of optical flow, and Gaussian noise.

In both figures, angular velocity error is measured by L2 norm. Fig. 5.13(a) shows the accuracy

of angular velocity versus IPA radius, δ, which is related to Wδ discussed in (5.1):

Wδ = δ × sgrid
f

, (5.29)
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(a) versus IPA radius (b) versus optical flow sampling ratio

Figure 5.13: Accuracy of angular velocity versus (a) IPA radius, δ, and (b) optical flow sampling

ratio. The shaded area represents the range between (a) the 45th and 55th percentiles or (b) the

48th and 52nd percentiles.

where sgrid is the spacing size of grid-based flowmap and f is the focal length in pixels. As a

result, “δ = 0.5” means that IPA includes the entire pixel area, “δ = 0” indicates that the IPA

approach is not used, and W1/2 is the value of Wδ when δ = 0.5. For an extremely severe noise

level, std = 1.2W1/2, the RMSE error increases as the δ grows. This is because IPA approach

minimizes the error in (5.1) based on the rotation vector which is misestimated due to severe

noise, thus resulting erroneous u∗. In case of moderate noise levels, the accuracy is improved for

higher value of δ. Meanwhile, the accuracy is minimized at about δ = 0.5 for zero noise levels.

In Fig. 5.13(b), the control parameter is sampling ratio that means what percentage of the total

number of optical flow vectors is an input. For example, a grid-based flowmap is constructed by

432 optical flow vectors in average, when sampling ratio equals to 0.01. Also, in this case, each

cell among non-empty cells fetches 1.1 optical flow approximately. The plot can be interpreted

by dividing it into left and right parts based on a total of about 5000 optical flow vectors. For

the small number of optical flow in a flowmap less than about 5000, the larger IPA radius is, the
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Table 5.3: Evaluations for latency and accuracies of angular velocity with or without the IPA

approach and mean method. Best results are in bold.

Sequence w/ IPA w/o IPA mean
Av

g.
la

te
nc

y indoor 15.52 16.42 16.14

outdoor day1 14.32 14.36 14.00

outdoor day2 14.40 15.16 14.49

outdoor night 28.01 29.27 27.77

Av
g.

R
M

SE

indoor 0.263 0.264 0.292

outdoor day1 0.132 0.141 0.139

outdoor day2 0.145 0.145 0.144

outdoor night 0.158 0.160 0.161

A
cc

ur
ac

y
(h

ig
he

r
is

be
tt

er
) ε
<

0.
53

indoor 0.392 0.402 0.364

outdoor day1 0.708 0.690 0.682

outdoor day2 0.624 0.620 0.621

outdoor night 0.609 0.586 0.592

ε
<

0.
52

indoor 0.850 0.854 0.829

outdoor day1 0.983 0.980 0.982

outdoor day2 0.976 0.978 0.980

outdoor night 0.965∗ 0.965 0.965

ε
<

0.
5

indoor 0.961∗ 0.961 0.948

outdoor day1 0.999 0.997 0.998

outdoor day2 1.000 1.000 1.000

outdoor night 1.000 1.000 1.000∗

∗This superscript indicates the best result, when compared by ex-

panding the number of decimal places.
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higher accuracy is. On the other side, there is some minimum point at about δ = 0.25. Since the

proposed algorithm fetches around 1000 optical flow vectors to construct a grid-based flowmap,

I have decided to set δ to 0.5 and have evaluated the algorithm.

Evaluation results for latency, error, and accuracy of angular velocity depending on the method

of constructing grid-based flowmap is shown in Table 5.3. I have also tested another “mean”

method that takes the position of optical flow of a cell as the average of the position of opti-

cal flow observed. This simple method enhances the performance in terms of latency and error

when compared with “w/o IPA” method. However, it is generally less accurate than “w/ IPA”

because it does not consider rotational motion, whereas IPA updates starting point based on the

pre-estimated motion. The threshold accuracy also suggests that the IPA approach is more effec-

tive than the mean method. The different performance of these methods may arise from a cell that

exists at the boundaries of static and dynamic object. Exceptionally, for outdoor day2 sequence

that contains a small-sized moving object, mean method shows the best result in terms of RMSE.

Overall, IPA approach enhances the latency and accuracy of angular velocity in situations where

a dominant object exists.

5.5.2 Motion Segmentation and Estimation

The proposed algorithm not only estimates the angular velocity of ego-motion of the camera

but also computes the rotational motion of moving objects. Since the dual-mode motion model

detects and tracks the position of objects depending on their area and motion, the moving objects

are tracked and identified as distinct IDs. The lower plots in Figs. 5.9 to 5.12 show the rotational

motion estimation results of a moving object. The relative motion of moving object to the camera

are detected and estimated in the shaded regions where the moving object appears. Especially

in Fig. 5.11, because the vehicle moves from the left to the right in front of the camera, the

estimated motion of the vehicle is dominated by y-axis angular velocity. Currently, the proposed

motion segmentation and ego-motion estimation procedures are operated under the rotational

motion assumption, thus the motion of moving objects is also restricted to rotational motion.

Therefore, future work should include the full-DoF motion estimation so that the motion model
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of the moving object can be exactly described.

Moreover, since the motion segmentation and the motion estimation modules of the proposed

algorithm are not strongly coupled with each other, but they operate in parallel, thus, the proposed

motion segmentation is able to be integrated with the existing algorithms in order to improve their

robustness in dynamic environments. Meanwhile, to highly boost the practical performance, it is

encouraged to be reduced computational load and be developed a pixel-wise segmentation with

high resolution, although the motion estimation module of the proposed algorithm can exclude

small moving objects by virtue of the RANSAC scheme.

5.6 Summary

In this paper, I developed a robust algorithm that identifies different motions and estimates an-

gular velocity belonging to the static background. The motion segmentation module fetches a

relatively large number of asynchronous optical flow vectors to identify the region of static back-

ground in the image frame, while the motion estimation module computes angular velocity with

a fewer number of optical flow vectors thus satisfying high temporal resolution. The proposed

dual-mode motion model for asynchronous and sparse optical flow stream data detects abnor-

mally moving object and identifies the apparent motion of static background. To validate the

performance of the proposed algorithm, I have collected datasets including moving objects and

stationary camera, and have published online. In evaluation, the proposed algorithm is supe-

rior to the other algorithm in terms of accuracy. Particularly, the proposed algorithm can robustly

estimate the stationary motion of static background when the camera stops and moving object ap-

pears, whereas other algorithms fail to estimate the angular velocity of ego-motion. In addition,

since the proposed algorithm fetches asynchronous optical flow stream and explicitly calculates

angular velocity from a bunch of optical flow vectors, motion estimation module (algorithm in

Ch.4) without motion segmentation alone can estimate angular velocity more accurately than the

existing algorithms. Further, the proposed motion segmentation which is loosely coupled with

the estimated angular velocity can collaborate with other motion estimation algorithms and be
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exploited in complex environments such as urban areas.
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6
Conclusion

In the dissertation, I tackle the problem of dealing with dynamic environments that include ex-

treme illumination conditions and moving objects such as human interaction, vehicles, etc. To

overcome a harsh light environment, I take advantage of event cameras that have a wider dy-

namic range (120 dB) than conventional CMOS cameras (60 dB). Thus, I have focused on the

enhancement of the event-based algorithm in terms of the robustness to various types of dynamic

environments: (i) I have proposed an intra-pixel-area event and developed the algorithm that es-

timates visual flow and detects sharp edge map robustly under the pixel noise of the event. (ii) I

have proposed an asynchronous optical flow stream with low-latency and scene-robust and have

validated at various texture levels of a scene and the speed of the camera. (iii) By exploiting

(i-ii), I have proposed the algorithm that estimates angular velocity robustly in dynamic environ-

ments including moving objects. In the following, I present a concise summary of each chapter

addressed in this dissertation.

Chapter 3: Intra-pixel-area Events and Applications. I proposed an intra-pixel-area event

that is a virtual floating event on the image plane in order to enhance the performance of RANSAC

of a fitting plane algorithm. Intra-pixel-area events approach makes the plane fitting algorithm
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robust to the pixel noise of event. Then, the lifetime of event is calculated from the inverse of the

norm of the normal vector of the plane, and an edge map is constructed by alive events. As the

plane fitting on an SAE is found robustly and accurately, the lifetime and by-product edge map

are better estimated than the existing algorithm in terms of accuracy and CDM similarity metrics.

Chapter 4: Low-Latency and Scene-Robust Asynchronous Optical Flow Stream Esti-

mation. I improved the performance of the existing block-matching algorithm for optical flow

estimation in terms of latency and robustness to the non-uniform texture of a scene. Moreover,

I developed an algorithm that estimates angular velocity with low latency by virtue of the pro-

posed asynchronous optical flow stream, and I evaluate the latency of algorithms using the result

of angular velocity estimates. In evaluation, the estimated optical flow shows much lower latency

than other frame-based optical flow algorithms and the estimated angular velocity shows higher

accuracy and robustness than the existing algorithms.

Chapter 5: Robust Angular Velocity Estimation in Dynamic Environments. I developed

an algorithm that segments dynamic foreground from static background using dual-mode motion

model management. The dual-mode motion model composed of apparent and candidate models

can detect the motion of objects that is different from the apparent motion of the camera, and

identify foreground and background. In evaluation, the proposed motion segmentation success-

fully identifies the motion of object even though the camera is stationary. Therefore, the angular

velocity of the camera is more robustly and accurately estimated from the region of the static

background than other algorithms.

The possible future work of this dissertation will be expanding the dimension of the motion

of event cameras. Since I developed an algorithm that estimates only three of the 6-DoF motions,

i.e., rotation, I restricted the situation of the collected dataset to rotational motion. If the dual-

mode motion model estimates full-DoF motions, the motion of moving object can be described

accurately. Besides, the 6-DoF pose estimation using only motion integration causes a drift error,

thus, in addition to optical flow, other clues (e.g., feature point in conventional computer vision)

that indicate the specified point in the world coordinate are also required to estimate the pose of

event cameras while reducing the drift problem.
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[45] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza, “Evo: A geometric approach

to event-based 6-dof parallel tracking and mapping in real time,” IEEE Robotics and Au-

tomation Letters, vol. 2, no. 2, pp. 593–600, 2016.

[46] F. Paredes-Vallés, K. Y. Scheper, and G. C. de Croon, “Unsupervised learning of a hier-

archical spiking neural network for optical flow estimation: From events to global motion

121



perception,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 8,

pp. 2051–2064, 2019.

[47] G. Gallego, C. Forster, E. Mueggler, and D. Scaramuzza, “Event-based camera pose track-

ing using a generative event model,” arXiv preprint arXiv:1510.01972, 2015.

[48] D. Liu, A. Parra, and T.-J. Chin, “Globally optimal contrast maximisation for event-based

motion estimation,” Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 6349–6358, 2020.

[49] A. Mitrokhin, C. Ye, C. Fermüller, Y. Aloimonos, and T. Delbruck, “Ev-imo: Motion seg-

mentation dataset and learning pipeline for event cameras,” IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 6105–6112, 2019.

[50] J. Li, F. Shi, W.-H. Liu, D. Zou, Q. Wang, P. K. Park, and H. Ryu, “Adaptive temporal pool-

ing for object detection using dynamic vision sensor.” British Machine Vision Conference

(BMVC), 2017.

[51] J. Xu, M. Jiang, L. Yu, W. Yang, and W. Wang, “Robust motion compensation for event

cameras with smooth constraint,” IEEE Transactions on Computational Imaging, vol. 6, pp.

604–614, 2020.

[52] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial odometry.” Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.

5816–5824, 2017.

[53] S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta, and vision,” Journal of General

Physiology, vol. 25, no. 6, pp. 819–840, 1942.

[54] T. Euler, S. Haverkamp, T. Schubert, and T. Baden, “Retinal bipolar cells: elementary build-

ing blocks of vision,” Nature Reviews Neuroscience, vol. 15, no. 8, pp. 507–519, 2014.

122



[55] N. W. Oesch and J. S. Diamond, “Ribbon synapses compute temporal contrast and encode

luminance in retinal rod bipolar cells,” Nature neuroscience, vol. 14, no. 12, pp. 1555–1561,

2011.

[56] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, pp. 106–154,

1962.

[57] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck, “Retinomorphic

event-based vision sensors: bioinspired cameras with spiking output,” Proceedings of the

IEEE, vol. 102, no. 10, pp. 1470–1484, 2014.

[58] B. Razavi, Design of analog CMOS integrated circuits. Tata McGraw-Hill Education,

2002.

[59] Y. Suh, S. Choi, M. Ito, J. Kim, Y. Lee, J. Seo, H. Jung, D.-H. Yeo, S. Namgung, J. Bong

et al., “A 1280× 960 dynamic vision sensor with a 4.95-µm pixel pitch and motion artifact

minimization,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5,

2020.

[60] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, “The event-camera

dataset and simulator: Event-based data for pose estimation, visual odometry, and slam,”

The International Journal of Robotics Research, vol. 36, no. 2, pp. 142–149, 2017.
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국문초록

본 논문은 움직이는 물체가 존재하는 동적 환경에서 카메라 자신의 각속도를 강인하게 추정

하는 문제를 다룬다. 이를 위해 기존 카메라의 한계점을 보완하는 새로운 패러다임을 제시한

이벤트 카메라를 활용한다. 기존 컴퓨터 영상 처리에서 자주 활용되는 RGB-D 및 단안 카메

라는 이미지 및 깊이맵을 프레임의 형태로 출력한다. 이러한 종류의 센서들은 적절한 광량

조건에서 빛을 모으기 위해 일정량의 노출 시간이 필요한데, 이 시간 동안에는 데이터가 출

력되지 않아 지연 시간이 발생하며, 출력된 프레임에서는 모션 블러가 발생할 수 있다. 또한

정지된 화면의 밝기값을 계속 출력하는 등 불필요한 데이터가 많아서, 비트 깊이를 늘리거나

지연시간을줄이기위해초당프레임수를늘릴경우,이에비례하여처리해야할데이터의양

이증가한다.또한,고조도및저조도에서의노출과다,노출부족현상도기존카메라의활용

영역을 제한할 수 있다. 이와 달리, 이벤트 카메라는 각 픽셀이 독립적으로 빛의 로그 밝기

값의 변화를 감지하며, 일정 비율만큼 밝아지거나 어두워지는 경우 해당 픽셀에서 이벤트를

발생시킨다.이러한특징덕분에,이벤트카메라는낮은지연속도와높은시간해상도로데이

터를 출력한다. 또한 60dB 정도의 다이내믹 레인지를 갖는 카메라보다 2배 가량 높은 130dB

의 높은 다이내믹 레인지를 가져 활용 범위가 더욱 넓다. 따라서 본 논문에서는 동적 환경에

서의 활용 가치가 높은 이벤트 카메라를 사용하여, 움직이는 물체가 존재하는 동적 환경에서

물체를검출하고카메라자신의움직임을강인하게추정하고자한다.

본논문의첫번째항목은다양한장면에강인하면서낮은지연속도로광학흐름을추정하

는연구를다룬다.기존카메라와다른이벤트카메라의동작원리로인해,다수의알고리즘은

기존 카메라의 프레임과 같은 가상의 이벤트 프레임을 생성하고, 이를 이용해 기존 알고리즘

의 프레임워크를 답습한다. 그러나 가상의 이벤트 프레임을 생성하기 위한 파라미터의 값은

장면의특성에따라크게좌우되며,이러한방식은이벤트카메라의특성중하나인낮은지연

속도를 증가시킨다. 따라서 본 항목은 광학 흐름을 비동기식으로 추정하여 낮은 지연 속도와

높은 정확도를 달성하는 것을 목표로 하며, 이를 위해 기존 블럭 매칭 알고리즘의 성능을 향

상시킨다.제안한알고리즘은국소적으로블럭매칭을수행함으로써불균일한텍스쳐때문에
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이벤트가고르지못하게출력되는상황에서도정확한광학흐름을추정할수있다.광학흐름

추정알고리즘의정확도와지연속도를측정하기위해,대중적으로많이사용되는데이터셋을

이용하였다.정성적,정량적평가를통해제안한알고리즘은광학흐름추정의정확도측면에

서타이벤트프레임기반알고리즘과비슷한수준을유지하면서,지연속도측면에서는높은

향상을보여주었다.또한제안한비동기식광학흐름을이용한각속도추정결과는타알고리

즘대비높은정확도를보여주며,특히다양한장면환경에서 15ms이하의일관된지연속도로

강인하게각속도를추정한것을확인하였다.

두번째 항목은 모션 분할 기법을 이용하여 움직이는 물체가 존재하는 동적 환경에서 카

메라 자신의 각속도를 강인하게 추정하는 연구를 수행하였다. 밝기 변화가 검출되는 픽셀에

대해서만 데이터를 출력하는 이벤트 카메라의 특성상, 작지만 빠른 물체가 출력 데이터의 대

부분을 점유할 수 있다. 배경이 아닌 외부 요인에 의해 나타나는 이벤트는 카메라의 움직임

추정 성능을 저하시킬 수 있으므로, 첫번째 항목에서 제안한 비동기식 광학 흐름을 이용하여

모션 분할을 수행하고 정적 배경의 움직임을 추정하고자 한다. 이를 위해, 이중 모드 움직임

모델을 설계하고, 정적 배경과 이동 물체의 위치를 그리드 레벨에서 추정한다. 이중 모드 움

직임 모델은 이동 물체의 갯수를 필요로 하지 않으며, 이동 물체가 화면 밖으로 사라지거나

다시 나타나는 상황에도 대응할 수 있다. 제안한 알고리즘은 분할된 정적 배경 영역에 속하

는비동기식광학흐름을이용하여높은시간해상도로카메라의각속도를추정할수있으며,

성능 검증을 통해 다양한 실내 및 실외, 낮과 밤의 동적 환경에서 타 알고리즘 대비 강인하고

정확하게카메라자신의움직임을추정할수있음을확인하였다.

주요어: 이벤트카메라,동적환경,모션분할,각속도추정,픽셀영역내이벤트,광학흐름

추정,강건성

학 번: 2017-32808
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