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• Real work environment is apparently different from well-defined environment. 

• RGB-D cameras have a narrow range of activity (indoor) and have the same limitation as 

the conventional frame-based cameras. (motion blur, low dynamic range, etc.)

Motivation

4

Video 1. Robust RGB-D visual odometry in dynamic 

environment [1]

Video 2. Real-time Object-aware Monocular Depth 

Estimation in Onboard Systems [2]

[1] Lee, Sangil, Son, Clark Youngdong, and Kim, H Jin, “Robust Real-time RGB-D Visual Odometry in Dynamic Environments via Rigid Motion Model”, 

IROS, 2019.

[2] Lee, Sangil, Lee, Chungkeun, Kim, Haram, and Kim, H Jin, “Real-time Object-aware Monocular Depth Estimation in Onboard Systems,” IJCAS, 2021.
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• The frame-based camera produces images at a fixed frame rate.

• Thus, there exist blind time and exposure time.

• Every pixel of the event-based camera detects the change in light intensity individually.

Motivation

5

Figure 1. Frames vs. Events. Adopted from [3,4].

[3] E. Mueggler, et al., “Event-based, 6-dof pose tracking for high-speed maneuvers,” IROS, 2014.

[4] H. Kim, et al., “Real-time 3d reconstruction and 6-dof tracking with an event camera,” ECCV, 2016.
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Video 3. Frames vs. Events in

HDR scene.
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• Due to these characteristics of the event camera, it has a large potential to be performed 

well in a dynamic environment including vehicle and human’s interaction.

• Challenge 1: Since event camera is a kind of data-driven sensors, it is difficult to perceive 

scene in event stream. ⇒ Ch. 3 and 4

• Challenge 2: Because of the same reason, it is hard to distinguish between background 

and foreground object in the stationary camera. ⇒ Ch. 5

6

Challenges

Video 4. Frames vs. Events in various environments

(a) Road at night (related to C1) (b) Car observed from stationary camera (related to C2)

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

Research Objectives

• Objective 1: We propose an asynchronous optical flow stream that accurately estimates 

angular velocity with a low latency.

• Objective 2: We robustly estimate angular velocity in a dynamic environment using optical 

flow stream and dual-mode motion model.

7

Figure 2. Flowchart of the dissertation
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Optical Flow Estimation

• R. Benosman, et al., “Event-based Visual Flow.” IEEE Trans. Neural Netw. Learning Syst., 

2014.

• E. Mueggler, et al., “Lifetime Estimation of Events from Dynamic Vision Sensors,” ICRA, 2015.

⇒ These visual flows are vulnerable to timestamp noise and aperture problem.

• M. Liu and T. Delbruck, “Adaptive Time-Slice Block-Matching Optical Flow Algorithm for 

Dynamic Vision Sensors,” BMVC, 2018.

• C. Lee, et al., “Spike-Flownet: Event-based Optical Flow Estimation with Energy Efficient 

Hybrid Neural Networks,” ECCV, 2020.

• A. Z. Zhu, et al., “EV-Flownet: Self-supervised Optical Flow Estimation for Event-based 

Cameras,” arXiv preprint, 2018.

• A. Z. Zhu, et al., “Unsupervised Event-based Learning of Optical Flow, Depth, and Ego motion,” 

CVPR, 2019.

⇒ Event-frame-based flow map estimation algorithms have a large latency.

Representative Papers (Cont’d)

8
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Angular Velocity Estimation

• G. Gallego, et al., “A Unifying Contrast Maximization Framework for Event Cameras, with 

Applications to Motion, Depth, and Optical Flow Estimation,” CVPR, 2018.

• M. Gehrig, et al., “Event-based Angular Velocity Regression with Spiking Networks,” ICRA, 2020.

⇒ Event-frame-based angular velocity estimation algorithms have a large latency and their 

parameter configuration highly depends on a scene.

Motion Segmentation/Estimation in Dynamic Environments

• T. Stoffregen, et al., “Event-based Motion Segmentation by Motion Compensation,” ICCV, 2019.

• D. Falanga, et al., "Dynamic Obstacle Avoidance for Quadrotors with Event Cameras," Science 

Robotics, 2020.

⇒ Motion-compensated image of warped events is easily corrupted by outliers.

• A. Mitrokhin, et al., "EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event 

Cameras," IROS, 2019.

⇒ Moving objects occupy a small portion of the image frame, and the camera has to keep 

moving.

Representative Papers

9
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Contributions and Outlines

• Chapter 3: Visual Flow with Intra-pixel-area Events

I. Intra-pixel-area Events for visual flow to be estimated robustly to data noise

II. Lifetime estimation and edge map detection with accurate visual flow

⇒ “Edge Detection for Event Cameras using Intra-pixel-area Events,” BMVC, 2019.

• Chapter 4: Low-latency and Scene-robust Optical Flow

I. Low-latency optical flow estimates angular velocity accurately

II. Scene-robust optical flow shows stable performance with consistent latency under 15ms

⇒ “Low-latency and Scene-robust Optical Flow Stream and Angular Velocity Estimation,” 

Access, 2021.

• Chapter 5: Robust Angular Velocity Estimation in Dynamic Environments

I. Dual-mode motion model detects moving objects without prior information

II. Robustness to moving objects for angular velocity estimation

⇒ “Real-time Rigid Motion Segmentation using Grid-based Optical Flow,” SMC, 2017.

⇒ “Robust Real-time RGB-D Visual Odometry in Dynamic Environments via Rigid Motion 

Model,” IROS, 2019.

10
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• Event camera senses logarithmic scale of intensity, 

detects the change, and verifies the polarity.

• Event camera produces asynchronous event:

with pixel position 𝐱𝑘, timestamp 𝑡𝑘, polarity 𝑝𝑘.

• DAVIS240C produces images and events.

Event Camera

12

Figure 4. DAVIS240C event camera used in presentation

Figure 3. The abstracted schematic of event camera

C2

( , , )k k k ke t p= x

Video 5. The event of DVS and the image of APS.
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Event Representations (Cont’d)

13

• Event stream: single event is fetched into 

the algorithm.

• Event packet: multiple events are 

fetched into the algorithm. The size of 

event packet can be decided by the 

number or time window of them.

• 3D spatio-temporal points: 3D points set 

in (𝑥, 𝑦, 𝑡) space

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion

Figure 5. Various event representations.

(a) Event stream (b) Spatio-temporal graph

Figure 6. Spiking neural network that predicts angular velocity 
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Event Representations

14

• Image of stacked events 

(a.k.a. SAE, time slice): image stacked 

by the timestamp of event packet

• Motion-compensated image of events 

(a.k.a. IWE): the count map of events 

warped by motion

Figure 7. Various event representations.

(a) Image of stacked events (b) Motion-compensated image

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion

Figure 8. Motion segmentation by motion compensation.
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Objective and Contributions

Objective

• Introduce intra-pixel-area events and 

develop an algorithm that estimates 

accurate visual flow and detects sharp 

edge map

Contributions

• Enhance the visual flow and lifetime estimation using intra-pixel-area event

: estimates visual flow and lifetime accurately.

• Detect semi-dense edge map from sparse event stream

: shows high similarity to the Canny edge (GT)

16

Intra-pixel-area
True positionPixel-center position
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Visual Flow and Lifetime

• SAE, Σ𝑒(𝐱), is defined as

• Visual flow can be computed by the 

gradient vector of the tangent plane

fitted on a SAE surface, 𝐧 = (𝑛1, 𝑛2, 𝑛3).

• Then, lifetime of event is the time 

until the adjacent event is triggered.

17

3 1 3 2/ ,  /x yv n n v n n= − = −

Figure 10. The basic principle of visual 

flow computation [5].

Figure 9. The example of SAE.

𝜏 𝐱 = 1 px /𝑣[px/s]

=
1

𝑣𝑥
2 + 𝑣𝑦

2

=
1

𝑛3
𝑛1
2 + 𝑛2

2

[5] R. Benosman, et al., “Event-based visual flow,” IEEE Trans. Neural Netw. Learning Syst., vol. 25, no. 2, pp. 407–417, 2014.
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Intra-pixel-area Events

18

• Intra-pixel-area event of an event 𝑒𝑘 = 𝐱𝑘 , 𝑡𝑘 , 𝑝𝑘 = (𝑥𝑘 , 𝑦𝑘, 𝑡𝑘 , 𝑝𝑘) exists inside

𝑆𝐱𝐤 𝛿 = 𝑥, 𝑦, 𝑡𝑘 𝑥𝑘 − 𝛿 < 𝑥 < 𝑥𝑘 + 𝛿 and 𝑦𝑘 − 𝛿 < 𝑦 < 𝑦𝑘 + 𝛿

• Then, the distance function is revised as follows

𝑑 = 𝑑𝑖𝑠𝑡 𝐧, 𝐳 → 𝑑 = min𝑑𝑖𝑠𝑡(𝐧, 𝐳) , ∀𝐳 ∈ 𝑆𝐱 𝛿 ,

where

𝑑𝑖𝑠𝑡 𝐧, 𝐳 =
|𝐧𝑇𝐳 − 1|

𝑛 2
2

• Inlier events are filtered according to 𝑑 < 𝜖𝑡ℎ as the same with the original.

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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Intra-pixel-area Events

19

Figure 11. Description and effectiveness of the intra-pixel-area event. After computing a local plane (gray) w/ or w/o intra-

pixel-area event, the outliers (blue), inliers (red), and the current event (green) are drawn.

• Intra-pixel-area event makes the fitting plane algorithm more robust against the noise.

(a) w/o intra-pixel-area 

under mild noise

(b) w/o intra-pixel-area 

under severe noise

(c) w/ intra-pixel-area

under mild noise

(d) w/ intra-pixel-area

under severe noise

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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• In both plots, “𝛿 = 0” means “w/o intra-pixel-area”, that is, naïve RANSAC.

• A fitting plane with intra-pixel-area event shows higher F-measure and lower lifetime error

within reasonable data noise levels.

Intra-pixel-area Events

20

Figure 12. F-measurement evaluation graph with a standard deviation of data noise. (a) F-measure versus 

standard deviation of data noise depending on intra-pixel radius, (b) lifetime accuracy versus intra-pixel 

radius depending on data noise.

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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Evaluation Results

21

Video 6. Result of visual flow estimation. The direction of flow vector are represented based on the color wheel.

(a) Proposed (b) Direction-Selective [7] (c) Lucas-Kanade [8]

(d) E. Mueggler [6] (e) Local Plane [5]

[5] R. Benosman, et al., “Event-based visual flow,” IEEE TNNLS, 2014.

[6] E. Mueggler, et al., “Lifetime estimation of events from dynamic vision sensors,” ICRA, 2015.

[7] T. Delbruck, “Frame-free dynamic digital vision,” in Proceedings of Intl. Symp. on Secure-Life Electronics, 2008.

[8] R. Benosman, et al., “Asynchronous frameless event-based optical flow,” Neural Networks, 2012.

(f) Ground-truth

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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Evaluation Results

• In bottom figures, the estimated lifetimes are drawn overlaid on a one image when vertical 

bar moves horizontally. 

• Our visual flow shows more consistent and precise results than the existing algorithm.

22

Figure 13. The 

accumulation of lifetime 

estimates. Yellow color 

means a large lifetime.

Video 7. Result of edge 

detection. (top) raw 

events, (bottom) alive 

events (detected edge).

(b) E. Mueggler, et al. [6]

(a) Proposed

high

low

high

low

[6] E. Mueggler, et al., “Lifetime estimation of events from dynamic vision sensors,” ICRA, 2015.

(b) Detected edge

(a) Raw events

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

• In a complicated scene, the proposed algorithm detects a sharper edge map due to 

accurate visual flow and lifetime estimation.

Evaluation Results

23

Video 8. The result of gray image, ground-truth edge map (Canny), Proposed, E. Mueggler, and 

30ms, 1ms accumulation in clockwise from top-left.

Proposed

Canny edge (GT)

Gray image

E. Mueggler [6]30ms accumulation

1ms accumulation

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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Evaluation Results

• Closest distance metric (CDM) [9] 

is defined as

𝐶𝐷𝑀𝜂 𝑓, 𝑔

= 1 −
𝒞 ℳ𝑐𝑑 𝑓, 𝑔

𝑓⋃𝑔
× 100[%],

where 𝜂 is the pixel radius to find 

matching edge pixels between two 

binary images, 𝑓 and 𝑔.

• 𝒞 ℳ𝑐𝑑 𝑓, 𝑔 is the distance cost 

of a pair matched by the closest-

distance.

• 𝑓⋃𝑔 is the number of edge pixels 

belonging to 𝑓 or 𝑔.

24

Figure 14. Performance analysis for edge detection. The camera 

moves slowly in the beginning and quickly in the latter part of the 

sequence. 

ProposedProposed

(a) Slow section (b) Fast section

(c) Whole sequence

[9] M. S. Prieto and A. R. Allen, “A similarity metric for edge images,” TPAMI, 2003.

Proposed

E. Mueggler

1ms

30ms
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Summary

25

• We proposed an intra-pixel-area event to improve the performance of RANSAC so that 

visual flow, lifetime, and edge map can be precisely estimated.

• However, in the natural scene, visual flow suffers from the aperture problem and derives 

the gradient vector of a straight line.

Video 9. Result of visual 

flow estimation on natural 

scene. The direction of 

flow vector are 

represented based on the 

color wheel.

(a) Proposed (b) Direction-Selective [7] (c) Lucas-Kanade [8]

(d) E. Mueggler [6] (e) Local Plane [5]

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion
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26

1 Introduction

2 Preliminaries

3 Visual Flow with Intra-pixel-area Events

4 Low-latency and Scene-robust Optical Flow

5 Robust Angular Velocity Estimation in Dynamic Environments

6 Conclusion

• Objective and Contributions

• Asynchronous Optical Flow Stream

• Angular Velocity Estimation

• Evaluation Results and Summary

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

Objective and Contributions

Objective

• Develop an algorithm that estimates asynchronous 

optical flow stream with low latency and 

robustness to various scenes

Contributions

• Enhancement of the patch-matching-based optical flow algorithm

: our local time slice produces asynchronous optical flow with very low latency

• Angular velocity estimation using above asynchronous optical flow stream

: updates with high accuracy, low latency and robustness to a various scene

27

Video 10. Asynchronous event (former) 

and optical flow (latter) stream.
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Asynchronous Optical Flow

Adaptive time-slice block-matching optical flow (ABMOF) [10]

• Fetch each incoming event

• Construct time slice (SAE) at certain condition

• Estimate optical flow vector by finding the best matching block in the both of the 

previous time slices

28

Figure 15. Time-slice block-matching method [14]

[10] M. Liu and T. Delbruck, “Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors,” BMVC, 2018.
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• Adaptive time-slice block-matching optical flow (ABMOF) vs. Proposed:

1. global time slice over whole image frame vs. local time slice over each patch

2. share 𝑑𝑡 vs. compute individual 𝒅𝒕𝒊

• In Figure 16, for visual simplicity, we illustrate the case for patch size 𝑤 = 3 in the 3D 

image and its vertical direction representing the queue capacity and bright values are 

recent events.

Asynchronous Optical Flow

29

Figure 16. Description of the local time slice. Each bin denotes the queue of 

a pixel, and a new event (magenta cube) is pushed into adjacent bins.
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Asynchronous Optical Flow

• Since ABMOF constructs a global time slice, it does not consider the texture distribution.

• Thus, erroneous optical flow may occur in areas with low texture.

• Our local time slice can extract the detail of a scene regardless of the local texture level so 

that the block-matching method successfully estimates an offset, i.e., optical flow.

30

Figure 17. The snapshot of time slice of (a) ABMOF and (b) ours. Since ours does not construct a full-sized 

time slice, local time slices of pixels is drawn overlaid on a frame for visualization purposes only.

(a) ABMOF (b) Proposed
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• We compute angular velocity analytically from a bunch of optical flows.

• For an optical flow p𝑘 , v𝑘 , 𝑑𝑡𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑢𝑘 , 𝑣𝑘, 𝑑𝑡𝑘), the below equation is satisfied:

• Then, for a total of 𝒏 optical flows, angular velocity can be solved by least-square method

where

• When the variance becomes less than the threshold, 

angular velocity is computed.

Angular Velocity Estimation

31

Figure 18. Variance versus iterations
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Evaluation Results

• Evaluation of asynchronous optical flow on GT frame-based flowmap [11]

(i) Since events are generated at the 

edge of a scene at which the true flowmap

has discontinuities,

(ii) Since our optical flows are generated 

asynchronously whereas the true flowmap

is synchronized with frame rate,

• Thus, we compensate optical flow vectors

where 𝑡𝑔𝑡,𝑘 is the timestamp of the k-th flowmap.

32

Figure 19. Histogram of end-point errors of optical 

flow vectors with or without vector compensation.

Table 1. Evaluations of optical flow on GT flowmap

(a) w/o compensation (b) w/ compensation

Zhu [12] EV-FN [13] Spike-FN [14]

[11] Zhu, A. Z., et al., “The Multi Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception.” RA-L, 2018.

[12] A. Z. Zhu, et al., “Unsupervised event-based learning of optical  flow,  depth,  and  egomotion,” CVPR, 2019.

[13] A. Z. Zhu, et al., “Ev-flownet: Self-supervised optical flow estimation for event-based cameras,” arXiv, 2018.

[14] C. Lee, et al., “Spike-flownet: event-based optical flow estimation with energy-efficient hybrid neural networks,” ECCV, 2020.

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

Evaluation Results

• Although EV-Flow 

produces a dense 

flowmap, we mask

its result with the 

existence of events.

• ABMOF and EV-

Flow yield erroneous 

optical flows at a 

distance where 

events are not 

triggered enough.

33

Figure 20. Qualitative 

results of optical flow 

on MVSEC sequences. 

(i) indoor1 (ii) indoor2 (iii) indoor3 (iv) outdoor1
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its result with the 
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Figure 20. Qualitative 

results of optical flow 

on MVSEC sequences. 
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Evaluation Results

35

Video 11. Qualitative results of optical flow on MVSEC sequences [11]. 
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• Latency is computed by 

minimizing the below:

where 𝜏𝑑 is a latency, 𝐴 is 

a diagonal coefficient, 𝐛 is 

a bias coefficient, and 

𝐿𝛿(⋅) is the Huber loss 

function.

• The number in 

parentheses indicates the 

accuracy of zero-latency 

angular velocity that is 

corrected by the above 

equation.

36

Evaluation Results

Table 2. Evaluations for latency and accuracy of optical flow. Best results are 

in green.
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Evaluation Results

• In evaluation of angular velocity, eSNN

[15] and CM [16] are compared with 

the proposed algorithm.

• Ours estimates accurate angular 

velocity with low latency and 

robustness to various scenes, whereas 

the performance of CM highly depends 

on the texture of the scene.

37

Table 3. Evaluations of angular velocity. Best 

results are in green.

[15] C. Lee, “Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks,” arXiv, 2020.

[16] G. Gallego, et al., “A Unifying Contrast Maximization Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow Estimation,” 

CVPR, 2018. 
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• We developed an algorithm that 

estimates accurate and low-latency 

optical flow.

• This approach takes advantage of event 

cameras such as low latency and high 

temporal resolution.

• The proposed optical flow and angular 

velocity estimation are exploited to 

develop robust angular velocity 

estimation in dynamic environments.

Summary

38

Figure 21. The result of angular velocity estimation. 

The bottom-right grayscale image denotes an image 

of stacked events showing the camera movement at 

a certain moment. Bright values are recent events. 

Proposed
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Objective

• Develop an algorithm that robustly estimates

angular velocity of the camera in dynamic 

environments where moving objects exist

Contributions

• Segmentation of static background and dynamic foreground

: our algorithm identifies a static background even if the camera stops

• Dual-mode motion model for event camera estimates the motion of static background

: estimates the angular velocity of ego-motion robustly and accurately

Objective and Contributions

40

Video 12. The class-separated optical flow
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Motion Segmentation

41

Grid-based 

optical flow

Motion 

hypothesis 

search 

Motion 

hypothesis 

refinement

Motion 

temporal 

matching

Model update

Model compensation

𝐿(𝑘)

Figure 22. The pipeline description of the algorithm. A stream of optical flow is depicted based on a color wheel. 𝐻(𝑘)

and 𝐺 𝑘 are the result of motion hypothesis search and refinement. Motion temporal matching yields ∗𝐺(𝑘) from the 

label 𝐿(𝑘) and the past.
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Motion Segmentation

42

Figure 23. The pipeline description of the algorithm. Flowmap of grid-based optical flow 𝑉(𝑘) is depicted based on a 

color wheel. 𝐻(𝑘) and 𝐺 𝑘 are the result of motion hypothesis search and refinement. Motion temporal matching yields 
∗𝐺(𝑘) from the label 𝐿(𝑘) and the past. An IDs in 𝐻(𝑘) , 𝐺(𝑘) , ∗𝐺(𝑘), and 𝐿(𝑘) are indicated as eigen colors, whereas the 

probability 𝑃 are represented by the mixture of eigen colors. In age map 𝛼, the brighter denotes the older.
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Motion Segmentation

43

Grid-based optical flow

• To segment incoming spatial information 

instantly, a grid-based flow map is built.

• The representative optical flow of a cell is 

obtained from the medoid.

Motion hypothesis search

• We randomly select nearby cells with a 

probability proportional to the min-error, 𝑠𝑖:

Figure 24. The construction of a grid-

based optical flow map
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Motion hypothesis refinement and clustering (1)

• After searching 𝑛ℎ𝑦𝑝 motion hypothesis, we repeat (E-step) finding the cell 

inliers and (M-step) estimating the their motion, until the supported 

number of each motion hypothesis remains unchanged.

• DBSCAN groups a number of motion hypotheses into fewer motions.

Motion temporal matching (2)

• Under the assumption that the distributions of the cell of a specific object 

are not changed unexpectedly in a short time.

• A matching coefficient between the i-th and the j-th motion at different 

timestamp (k) and (l):

where 𝛿 operator constructs a binary matrix with one if the element value 

of the first term is equal to the second term.

Motion Segmentation

44

(1)

(2)
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Motion model update

• 𝑃𝑖(ℎ) means  a probability of cell i is associated to motion h, and its label denotes 

dominant motion:

• When the result of spatial segmentation and temporal matching 𝐺𝑖
(𝑘)

is fetched,

Apparent model:

Candidate model:

Dual-mode Motion Model Management

45

Lead to 

the final label
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Motion model swap

• Model swap is designed for preventing the apparent model from updating erroneous 

motion or from missing new motion.

• When the age of candidate model is saturated or larger than that of apparent model:

Dual-mode Motion Model Management

46

Video 13. The internal parameter of apparent and candidate model when motion model swap happens.

(a) 𝐴𝑃 (b) 𝐴𝛼 (c) 𝐶𝑃 (d) 𝐶𝛼
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Dual-mode Motion Model Management

47

Motion model compensation

• Since the apparent and candidate models 

operate on the camera coordinate, their 

parameters are need to be compensated 

through optical flow measurement.

• For each single optical flow vector, the 

probability vector and age of each model 

are compensated by 2D area-weighted 

interpolation:

Figure 25. The description of how the parameters 

of cell are compensated. The average optical flow 
of i-th cell is ҧ𝑣𝑖, and then the parameters of i-th cell 

are compensated based on the parameters of cells 

that are elements of 𝑆𝑖
(𝑘+1)

.
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Evaluation Results

48

Collected dataset

• Test sequences include indoor/outdoor, day/night environments.

• Test sequences include moving object such as human’s interaction, vehicles.

• Published online at https://sangillee.com/_pages/larr-dvs-de-dataset/

Video 14. Frames and events of tested sequences. Positive and negative events are represented as green and red 

dots, respectively.

(a) indoor1 (b) outdoor_night

(c) outdoor_day1 (d) outdoor_day2
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Compared algorithm

Evaluation Results

49

Motion estimationEvent stream

Motion 

segmentation

Motion updateEvent stream

Association 

update

Motion 

initialization

Optical flow 

estimation
Angular velocity

Angular velocity

z−1

Refine motion w/ 

hard association Figure 26. The 

simplified flowchart of 

compared algorithms.

Proposed (Ch. 4) 

Proposed (Ch. 5)

CM [16]

EMSMC [17]

EMSMC-Hard
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Evaluation Results

50

• The model of ours, and IWE of 

both EMSMC and CM are 

depicted.

• EMSMC segments different 

motions, whereas IWE of CM is 

corrupted due to moving object.

• Ours also can detect moving 

objects.

Figure 27. The internal parameter of compared algorithms.

Gray image Ours EMSMC[17] CM[16]

[16] G. Gallego, et al., “A Unifying Contrast Maximization Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow 

Estimation,” CVPR, 2018. 

[17] T. Stoffregen, et al., "Event-based motion segmentation by motion compensation," ICCV, 2019.

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

Evaluation Results

51

Video 15. The internal parameter of our algorithm on the collected dataset.

(a) indoor1 (b) outdoor_night

(c) outdoor_day1 (d) outdoor_day2

0.3x
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Evaluation Results

52

• Table 4 shows the quantitative result of evaluations on the collected dataset.

• The latency of our algorithm is increased due to motion model update.

• Nevertheless, our algorithm is superior to other algorithms in terms of accuracy.

• The performance of EMSMC and 

CM deteriorate due to the 

existence of moving object.

• Although ours (Ch.4) does not 

consider moving objects, it estimates

angular velocity accurately than

other algorithms due to its robust

estimator, RANSAC.

Table 4. Evaluations of angular velocity. Best results are in bold.

Introduction Preliminaries Visual Flow Asynchronous Optical Flow Robust Angular Velocity Conclusion



/60

Evaluation Results

53

• For visual clearness, 

we draw plots of angular 

velocity for x-axis only.

• The dark shaded region

denotes the existence 

of moving object.

• Our algorithm robustly 

and accurately estimates 

the angular velocity.

Figure 28. The angular velocity 

estimates of compared algorithms 

on (upper) indoor and (lower) 

outdoor_night sequences

GT

Ours

Ours (Ch. 4)

EMSMC

EMSMC-Hard

CM

GT

Ours

Ours (Ch. 4)

EMSMC

EMSMC-Hard

CM
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Evaluation Results

54

• Even in the situation 

in which the camera 

stops, ours estimates 

the zero angular velocity 

of the camera.

Figure 29. The angular velocity 

estimates of compared algorithms 

on (upper) outdoor_day1 and 

(lower) outdoor_day2 sequences

Video 16. Event stream in

outdoor_day1 sequence.

GT

Ours

Ours (Ch. 4)

EMSMC

EMSMC-Hard

CM

GT

Ours

Ours (Ch. 4)

EMSMC

EMSMC-Hard

CM
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Summary

55

• We developed an algorithm that segments dynamic foreground from a static background

and identifies their regions.

• Therefore, our algorithm robustly estimates angular velocity in dynamic environments 

where moving object exists.

• Since the motion segmentation using dual-mode motion models and the motion 

estimation modules are loosely coupled to each other, our motion segmentation can be 

exploited to the other applications.

Figure 30. The angular velocity of our algorithm on the indoor_day1 sequence.
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Chapter 6

56

1 Introduction

2 Preliminaries

3 Visual Flow with Intra-pixel-area Events

4 Low-latency and Scene-robust Optical Flow

5 Robust Angular Velocity Estimation in Dynamic Environments

6 Conclusion

• Summary and Future Work

• References
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Summary and Future Work

Robust event-based angular velocity estimation in dynamic environments

• Chapter 3: Visual Flow with Intra-pixel-area Events

- Intra-pixel-area events for enhancing the performance of plane fitting

- Visual flow estimation and edge map detection that is accurate and robust

⇒ Robustness to timestamp noise

• Chapter 4: Low-latency and Scene-robust Optical Flow

- Optical flow with low latency under 15 ms consistently

- Accurate estimation for various scene of tested sequences with the same parameters

⇒ Robustness to various scenes

⇒ Future research remains to increase the computational efficiency of the algorithm

• Chapter 5: Robust Angular Velocity Estimation in Dynamic Environments

- Accurate angular velocity estimation using dual-mode motion models

⇒ Robustness to moving objects

⇒ Future research remains to expand the dimension of motion from 3-DoF to full DoF.

57
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• Real work environment is apparently different from well-defined environment.

• Humans and vehicles can interfere in front of the camera.

Appendix 1-1: Motivation

61

Figure A-1. Examples of dynamic environments [3,4]

Video A-1. Well-defined dataset. (left) KITTI [1], (right) DAVIS240C [2]

[1] Andreas Geiger, et al., “Vision meets Robotics: The KITTI Dataset,” IJRR, 2013.

[2] E. Mueggler, et al., “The Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odometry, and SLAM,” IJRR, 2017.

[3] "[서울포토] ‘인천공항안내도하고사진도찰칵!’”, “https://www.seoul.co.kr/news/newsView.php?id=20180711500128”, Accessed: 2021.10.29.

[4] “신호등지키고, 울퉁불퉁길피하고... 로봇일개미 “점심배달왔습니다””, 

“https://www.chosun.com/economy/tech_it/2021/01/19/2CZGVGDZSFC3DOATRTIX5QWKZU/”, Accessed: 2021.10.29.
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• The biological retina and CMOS image sensor have similar mechanisms in terms of a 

single receptor.

• However, the big difference is how each system delivers light information, i.e., 

asynchronism vs. synchronism.

Appendix 1-2: Retina vs Frame-based Camera

62

Figure A-2. Biological retina vs. CMOS image sensor. 

Copyright © PearsonEducation, Inc., 2013. 

Figure A-3. Bayer pattern of image
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Figure A-4. Biological retina and receptive

field of visual system.

• The ganglion cells in vertebrate retina constitute magnocellular (M-type) or parvocellular 

(P-type) pathway that respond to motion or color/shapes, respectively.

• Event camera is developed to imitate the magnocellular pathway in the brain.

Appendix 2-1: Retina

63
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Figure A-5. Action potential of magno- and parvo-
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• To measure the preciseness of lifetime estimates, Gaussian curve is fitted to the 

histogram.

• In (a), 𝜇1 = 0.004, 𝜎1 = 𝟎. 𝟎𝟎𝟏𝟑 and 𝜇2 = 0.009, 𝜎2 = 0.0019,

In (b), 𝜇1 = 0.006, 𝜎1 = 𝟎. 𝟎𝟎𝟏𝟎 and 𝜇2 = 0.010, 𝜎2 = 0.0019.

Appendix 3-1: Histogram of lifetime estimates

64
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Figure A-6. The histogram of lifetime estimates. Gaussian curves fitted to the histogram are drawn overlaid.

(b) Proposed(a) E. Mueggler [6]
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• Canny edge can be regarded as the ground truth of edge detection only at that time the 

frame is generated.

• Event-based edge detection shows a much higher temporal resolution.

Appendix 3-2: Frame vs. event-based edge detection

65
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Video A-2. Grayscale image and the detected edge map by Canny and the proposed event-base method.

ProposedCanny edge (GT)Gray image 0.2x
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Appendix 3-3: Self-collected Sequence

66

Video A-3. The result of edge detection for each sequence: shapes_rotation and self-collected sequence.

(c) Proposed (d) E. Mueggler [6]

(a) Gray image (b) Canny edge

(e) 1ms accumulation (f) 30ms accumulation

(c) Proposed (d) E. Mueggler [6]

(a) Gray image (b) Canny edge

(e) 1ms accumulation (f) 30ms accumulation
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• Adaptive time-slice block-matching optical flow (ABMOF) vs. Proposed:

1. global time slice over whole image frame vs. local time slice over each patch

2. share 𝑑𝑡 vs. compute individual 𝒅𝒕𝒊

• In Algorithm A-1, pseudocode for motion spatial segmentation is provided.

Appendix 4-1: Asynchronous Optical Flow

67

Algorithm A-1. Asynchronous optical flow estimation
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Appendix 4-2: Discussion on Robustness

• Ours estimates accurate angular velocity with low latency and robustness to various 

scenes, whereas the performance of CM highly depends on the texture of the scene.

68

Table A-1. Evaluations of angular velocity. Best 

results are in bold.

Table A-2. Evaluations with different parameters. 

Results better than ours are in bold.
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Appendix 4-3: Discussion on Robustness

69

Table A-3. Evaluations for latency and accuracy of modifications of CM framework. The second row denotes the 

event grouping method of each CM framework. Results better than ours are in bold. Results larger than 1 are in red.
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• A filter-based motion segmentation algorithm fails to identify a static background.

Appendix 5-1: Particle-filter-based Object Detection

70

Video A-4. A particle-filter-based motion segmentation algorithm developed before.
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• A matching coefficient between the i-th and the j-th motion at different timestamp (k) and 

(l):

where 𝛿 operator constructs a binary matrix with one if the element value of the first term 

is equal to the second term:

𝐵 = 𝛿 𝐴, 𝑥 = 𝑏𝑖𝑗 ,

𝑏𝑖𝑗 = ቊ
1, if 𝑎𝑖𝑗 = 𝑥

0, otherwise.

and operator ⊙ and * denote elementwise multiplication and 2D convolution, respectively, 

and 𝐾𝜎 is a kernel matrix with all elements 1.

Appendix 5-2: Motion Temporal Matching

71
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Appendix 5-3: Evaluation Results

72

Figure A-7. The angular velocity 

estimates of our algorithm on 

(upper) indoor and (lower) 

outdoor_night sequences
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Appendix 5-4: Evaluation Results

73

Figure A-8. The angular velocity 

estimates of our algorithm on 

(upper) outdoor_day1 and (lower) 

outdoor_day2 sequences
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